Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 27(9): 110609, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39286488

RESUMEN

Dictyostelium discoideum is a professional phagocyte frequently used to study cellular processes underlying the recognition, engulfment, and infection course of microbial pathogens. Sphingolipids are abundant components of the plasma membrane that bind cholesterol, control membrane properties, participate in signal transmission, and serve as adhesion molecules in recognition processes relevant to immunity and infection. By combining lipidomics with a bioinformatics-based cloning strategy, we show here that D. discoideum produces phosphoinositol-containing sphingolipids with predominantly phytoceramide backbones. Cell-free expression of candidate inositol-phosphorylceramide (IPC) synthases from D. discoideum enabled identification of an enzyme that selectively catalyzes the transfer of phosphoinositol from phosphatidylinositol onto ceramide. The IPC synthase, DdIPCS1, shares multiple sequence motifs with yeast IPC and human sphingomyelin synthases and localizes to the Golgi apparatus as well as the contractile vacuole of D. discoideum. These findings open up important opportunities for exploring a role of sphingolipids in phagocytosis and infection across major evolutionary boundaries.

2.
Nat Commun ; 14(1): 8115, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065946

RESUMEN

Mitochondria are double-membrane-bounded organelles that depend critically on phospholipids supplied by the endoplasmic reticulum. These lipids must cross the outer membrane to support mitochondrial function, but how they do this is unclear. We identify the Voltage Dependent Anion Channel (VDAC), an abundant outer membrane protein, as a scramblase-type lipid transporter that catalyzes lipid entry. On reconstitution into membrane vesicles, dimers of human VDAC1 and VDAC2 catalyze rapid transbilayer translocation of phospholipids by a mechanism that is unrelated to their channel activity. Coarse-grained molecular dynamics simulations of VDAC1 reveal that lipid scrambling occurs at a specific dimer interface where polar residues induce large water defects and bilayer thinning. The rate of phospholipid import into yeast mitochondria is an order of magnitude lower in the absence of VDAC homologs, indicating that VDACs provide the main pathway for lipid entry. Thus, VDAC isoforms, members of a superfamily of beta barrel proteins, moonlight as a class of phospholipid scramblases - distinct from alpha-helical scramblase proteins - that act to import lipids into mitochondria.


Asunto(s)
Fosfolípidos , Canal Aniónico 1 Dependiente del Voltaje , Humanos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Fosfolípidos/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
FASEB J ; 37(11): e23229, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37795915

RESUMEN

Toxoplasma gondii is an obligate, intracellular apicomplexan protozoan parasite of both humans and animals that can cause fetal damage and abortion and severe disease in the immunosuppressed. Sphingolipids have indispensable functions as signaling molecules and are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Ceramide is the precursor for all sphingolipids, and here we report the identification, localization and analyses of the Toxoplasma ceramide synthases TgCerS1 and TgCerS2. Interestingly, we observed that while TgCerS1 was a fully functional orthologue of the yeast ceramide synthase (Lag1p) capable of catalyzing the conversion of sphinganine to ceramide, in contrast TgCerS2 was catalytically inactive. Furthermore, genomic deletion of TgCerS1 using CRISPR/Cas-9 led to viable but slow-growing parasites indicating its importance but not indispensability. In contrast, genomic knock out of TgCerS2 was only accessible utilizing the rapamycin-inducible Cre recombinase system. Surprisingly, the results demonstrated that this "pseudo" ceramide synthase, TgCerS2, has a considerably greater role in parasite fitness than its catalytically active orthologue (TgCerS1). Phylogenetic analyses indicated that, as in humans and plants, the ceramide synthase isoforms found in Toxoplasma and other Apicomplexa may have arisen through gene duplication. However, in the Apicomplexa the duplicated copy is hypothesized to have subsequently evolved into a non-functional "pseudo" ceramide synthase. This arrangement is unique to the Apicomplexa and further illustrates the unusual biology that characterize these protozoan parasites.


Asunto(s)
Parásitos , Toxoplasma , Humanos , Animales , Toxoplasma/genética , Duplicación de Gen , Filogenia , Esfingolípidos , Ceramidas/genética , Proteínas Protozoarias/genética
4.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546869

RESUMEN

Sphingomyelin (SM) is a major component of mammalian cell membranes and particularly abundant in the myelin sheath that surrounds nerve fibers. Its production is catalyzed by SM synthases SMS1 and SMS2, which interconvert phosphatidylcholine and ceramide to diacylglycerol and SM in the Golgi and at the plasma membrane, respectively. As the lipids participating in this reaction fulfill both structural and signaling functions, SMS enzymes have considerable potential to influence diverse important cellular processes. The nematode Caenorhabditis elegans is an attractive model for studying both animal development and human disease. The organism contains five SMS homologues but none of these have been characterized in any detail. Here, we carried out the first systematic analysis of SMS family members in C. elegans . Using heterologous expression systems, genetic ablation, metabolic labeling and lipidome analyses, we show that C. elegans harbors at least three distinct SM synthases and one ceramide phosphoethanolamine (CPE) synthase. Moreover, C. elegans SMS family members have partially overlapping but also unique subcellular distributions and together occupy all principal compartments of the secretory pathway. Our findings shed light on crucial aspects of sphingolipid metabolism in a valuable animal model and opens avenues for exploring the role of SM and its metabolic intermediates in organismal development.

5.
Biol Chem ; 404(5): 467-490, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36810295

RESUMEN

Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.


Asunto(s)
Toxinas Bacterianas , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Lípidos/química
6.
Small ; 18(50): e2203723, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36266931

RESUMEN

Qualitative and quantitative analysis of transient signaling platforms in the plasma membrane has remained a key experimental challenge. Here, biofunctional nanodot arrays (bNDAs) are developed to spatially control dimerization and clustering of cell surface receptors at the nanoscale. High-contrast bNDAs with spot diameters of ≈300 nm are obtained by capillary nanostamping of bovine serum albumin bioconjugates, which are subsequently biofunctionalized by reaction with tandem anti-green fluorescence protein (GFP) clamp fusions. Spatially controlled assembly of active Wnt signalosomes is achieved at the nanoscale in the plasma membrane of live cells by capturing the co-receptor Lrp6 into bNDAs via an extracellular GFP tag. Strikingly, co-recruitment is observed of co-receptor Frizzled-8 as well as the cytosolic scaffold proteins Axin-1 and Disheveled-2 into Lrp6 nanodots in the absence of ligand. Density variation and the high dynamics of effector proteins uncover highly cooperative liquid-liquid phase separation (LLPS)-driven assembly of Wnt "signalodroplets" at the plasma membrane, pinpointing the synergistic effects of LLPS for Wnt signaling amplification. These insights highlight the potential of bNDAs for systematically interrogating nanoscale signaling platforms and condensation at the plasma membrane of live cells.


Asunto(s)
Proteínas Wnt , beta Catenina , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Fosforilación , Vía de Señalización Wnt , Membrana Celular/metabolismo
7.
Elife ; 112022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102623

RESUMEN

Sphingomyelin is a dominant sphingolipid in mammalian cells. Its production in the trans-Golgi traps cholesterol synthesized in the ER to promote formation of a sphingomyelin/sterol gradient along the secretory pathway. This gradient marks a fundamental transition in physical membrane properties that help specify organelle identify and function. We previously identified mutations in sphingomyelin synthase SMS2 that cause osteoporosis and skeletal dysplasia. Here, we show that SMS2 variants linked to the most severe bone phenotypes retain full enzymatic activity but fail to leave the ER owing to a defective autonomous ER export signal. Cells harboring pathogenic SMS2 variants accumulate sphingomyelin in the ER and display a disrupted transbilayer sphingomyelin asymmetry. These aberrant sphingomyelin distributions also occur in patient-derived fibroblasts and are accompanied by imbalances in cholesterol organization, glycerophospholipid profiles, and lipid order in the secretory pathway. We postulate that pathogenic SMS2 variants undermine the capacity of osteogenic cells to uphold nonrandom lipid distributions that are critical for their bone forming activity.


Asunto(s)
Vías Secretoras , Esfingomielinas , Animales , Colesterol , Glicerofosfolípidos , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)
8.
Fac Rev ; 11: 22, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081427

RESUMEN

Membrane growth requires lipid supply, which is usually accomplished by lipid synthesis or vesicular trafficking. In the case of autophagosomes, these principles do not apply. Ghanbarpour et al. postulate that autophagosome expansion relies on non-vesicular lipid delivery from the ER, whereby the activity of a lipid transfer protein (LTP) is directly coupled to scramblase activities in the donor and acceptor bilayers1. This new concept opens the possibility that lipid traffic is controlled by scramblases that provide not only specific docking sites for LTPs, thereby directing lipid flow, but also support their activity by overcoming barriers for lipid extraction and deposition.

9.
Nat Commun ; 13(1): 1875, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388011

RESUMEN

Lysosomes are vital organelles vulnerable to injuries from diverse materials. Failure to repair or sequester damaged lysosomes poses a threat to cell viability. Here we report that cells exploit a sphingomyelin-based lysosomal repair pathway that operates independently of ESCRT to reverse potentially lethal membrane damage. Various conditions perturbing organelle integrity trigger a rapid calcium-activated scrambling and cytosolic exposure of sphingomyelin. Subsequent metabolic conversion of sphingomyelin by neutral sphingomyelinases on the cytosolic surface of injured lysosomes promotes their repair, also when ESCRT function is compromised. Conversely, blocking turnover of cytosolic sphingomyelin renders cells more sensitive to lysosome-damaging drugs. Our data indicate that calcium-activated scramblases, sphingomyelin, and neutral sphingomyelinases are core components of a previously unrecognized membrane restoration pathway by which cells preserve the functional integrity of lysosomes.


Asunto(s)
Calcio , Esfingomielinas , Calcio/metabolismo , Citosol/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisosomas/metabolismo , Esfingomielinas/metabolismo
10.
ACS Chem Biol ; 16(3): 452-456, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33586946

RESUMEN

We report short ceramide analogs that can be activated with light and further functionalized using azide-alkyne click chemistry. These molecules, termed scaCers, exhibit increased cell permeability compared to their long-chain analogs as demonstrated using mass spectrometry and imaging. Notably, scaCers enable optical control of apoptosis, which is not observed with long-chain variants. Additionally, they function as photoswitchable substrates for sphingomyelin synthase 2 (SMS2), exhibiting inverted light-dependence compared to their extended analogs.


Asunto(s)
Apoptosis/efectos de la radiación , Ceramidas/química , Fármacos Fotosensibilizantes/química , Alquinos/química , Azidas/química , Permeabilidad de la Membrana Celular , Ceramidas/metabolismo , Química Clic , Células HeLa , Humanos , Procesos Fotoquímicos , Relación Estructura-Actividad , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
11.
mBio ; 12(1)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500344

RESUMEN

Phagocytosis by alveolar macrophages is the obligate first step in Mycobacterium tuberculosis (Mtb) infection, yet the mechanism underlying this process is incompletely understood. Here, we show that Mtb invasion relies on an intact sphingolipid biosynthetic pathway. Inhibition or knockout of early sphingolipid biosynthetic enzymes greatly reduces Mtb uptake across multiple phagocytic cell types without affecting other forms of endocytosis. While the phagocytic receptor dectin-1 undergoes normal clustering at the pathogen contact sites, sphingolipid biosynthetic mutant cells fail to segregate the regulatory phosphatase CD45 from the clustered receptors. Blocking sphingolipid production also impairs downstream activation of Rho GTPases, actin dynamics, and phosphoinositide turnover at the nascent phagocytic cup. Moreover, we found that production of sphingomyelin, not glycosphingolipids, is essential for Mtb uptake. Collectively, our data support a critical role of sphingomyelin biosynthesis in an early stage of Mtb infection and provide novel insights into the mechanism underlying phagocytic entry of this pathogen.IMPORTANCEMycobacterium tuberculosis (Mtb) invades alveolar macrophages through phagocytosis to establish infection and cause disease. The molecular mechanisms underlying Mtb entry are still poorly understood. Here, we report that an intact sphingolipid biosynthetic pathway is essential for the uptake of Mtb by phagocytes. Disrupting sphingolipid production affects the segregation of the regulatory phosphatase CD45 from the nascent phagosome, a critical step in the progression of phagocytosis. We also show that blocking sphingolipid biosynthesis impairs activation of small GTPases and phosphoinositide turnover at the host-pathogen contact sites. Moreover, production of sphingomyelin, not glycosphingolipids, is critical for the phagocytic uptake of Mtb These data demonstrate a vital role for sphingomyelin biosynthesis in an early step of Mtb infection, defining a potential target for antimycobacterial therapeutics.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos Alveolares/microbiología , Mycobacterium tuberculosis/fisiología , Fagocitosis/fisiología , Esfingomielinas/biosíntesis , Animales , Vías Biosintéticas , Células Cultivadas , Humanos , Macrófagos Alveolares/inmunología , Ratones , Mycobacterium tuberculosis/inmunología , Células RAW 264.7 , Transducción de Señal , Células THP-1
12.
FEBS Lett ; 594(22): 3739-3750, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33058150

RESUMEN

Mitochondrial translocation of ceramides triggers Bax-dependent apoptosis. To elucidate how ceramides activate Bax and commit cells to death, we developed a switchable version of the ceramide transfer protein CERT, sCERT. Upon its drug-induced recruitment to mitochondria, sCERT retains the ability to bind VAP proteins in the ER and catalyzes mitochondrial import of externally added fluorescent ceramides. Mitochondrial recruitment of sCERT also triggers mitochondrial translocation of Bax. The ability of mitochondria-bound sCERT to mediate ceramide import and Bax translocation requires both its START domain and ongoing ceramide biosynthesis. These data extend our previous finding that mistargeting of ER ceramides to mitochondria specifically activates Bax and establish sCERT as a novel tool to dissect the underlying mechanism in a time-resolved manner.


Asunto(s)
Ceramidas/metabolismo , Mitocondrias/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Sirolimus/efectos adversos , Proteína X Asociada a bcl-2/metabolismo , Animales , Apoptosis , Células CHO , Cricetulus , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas
13.
Cell Stress ; 3(8): 280-283, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31440742

RESUMEN

Ceramides are central intermediates of sphingolipid metabolism that can activate a variety of tumor suppressive cellular programs, including cell cycle arrest, senescence and apoptosis. Indeed, perturbations in ceramide generation and turnover are frequently linked to cancer cell survival and resistance to chemotherapy. Consequently, the potential of ceramide-based therapeutics in the treatment of cancer has become a major focus of interest. A growing body of evidence indicates that ceramides can act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are scarce. In our recent study (Dadsena S et al., 2019, Nat Commun 10:1832), we used a photoactivatable ceramide probe combined with computer simulations and functional studies to identify the voltage-dependent anion channel VDAC2 as a critical effector of ceramide-induced mitochondrial apoptosis. Collectively, our findings provide a novel molecular framework for how ceramides execute their widely acclaimed anti-neoplastic activities.

14.
Nat Commun ; 10(1): 1832, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015432

RESUMEN

Ceramides draw wide attention as tumor suppressor lipids that act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are largely unknown. Using a photoactivatable ceramide probe, we here identify the voltage-dependent anion channels VDAC1 and VDAC2 as mitochondrial ceramide binding proteins. Coarse-grain molecular dynamics simulations reveal that both channels harbor a ceramide binding site on one side of the barrel wall. This site includes a membrane-buried glutamate that mediates direct contact with the ceramide head group. Substitution or chemical modification of this residue abolishes photolabeling of both channels with the ceramide probe. Unlike VDAC1 removal, loss of VDAC2 or replacing its membrane-facing glutamate with glutamine renders human colon cancer cells largely resistant to ceramide-induced apoptosis. Collectively, our data support a role of VDAC2 as direct effector of ceramide-mediated cell death, providing a molecular framework for how ceramides exert their anti-neoplastic activity.


Asunto(s)
Apoptosis , Ceramidas/metabolismo , Mitocondrias/fisiología , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Sitios de Unión/genética , Ceramidas/química , Técnicas de Inactivación de Genes , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Simulación de Dinámica Molecular , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/aislamiento & purificación , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/química , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/aislamiento & purificación
15.
JCI Insight ; 4(7)2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30779713

RESUMEN

Mechanisms leading to osteoporosis are incompletely understood. Genetic disorders with skeletal fragility provide insight into metabolic pathways contributing to bone strength. We evaluated 6 families with rare skeletal phenotypes and osteoporosis by next-generation sequencing. In all the families, we identified a heterozygous variant in SGMS2, a gene prominently expressed in cortical bone and encoding the plasma membrane-resident sphingomyelin synthase SMS2. Four unrelated families shared the same nonsense variant, c.148C>T (p.Arg50*), whereas the other families had a missense variant, c.185T>G (p.Ile62Ser) or c.191T>G (p.Met64Arg). Subjects with p.Arg50* presented with childhood-onset osteoporosis with or without cranial sclerosis. Patients with p.Ile62Ser or p.Met64Arg had a more severe presentation, with neonatal fractures, severe short stature, and spondylometaphyseal dysplasia. Several subjects had experienced peripheral facial nerve palsy or other neurological manifestations. Bone biopsies showed markedly altered bone material characteristics, including defective bone mineralization. Osteoclast formation and function in vitro was normal. While the p.Arg50* mutation yielded a catalytically inactive enzyme, p.Ile62Ser and p.Met64Arg each enhanced the rate of de novo sphingomyelin production by blocking export of a functional enzyme from the endoplasmic reticulum. SGMS2 pathogenic variants underlie a spectrum of skeletal conditions, ranging from isolated osteoporosis to complex skeletal dysplasia, suggesting a critical role for plasma membrane-bound sphingomyelin metabolism in skeletal homeostasis.


Asunto(s)
Calcificación Fisiológica/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Osteocondrodisplasias/genética , Osteoporosis/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Adulto , Edad de Inicio , Anciano de 80 o más Años , Huesos/diagnóstico por imagen , Huesos/patología , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación Missense , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/patología , Osteoporosis/diagnóstico , Osteoporosis/patología , Linaje , Adulto Joven
16.
Elife ; 82019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30720434

RESUMEN

Ceramides are central intermediates of sphingolipid metabolism that also function as potent messengers in stress signaling and apoptosis. Progress in understanding how ceramides execute their biological roles is hampered by a lack of methods to manipulate their cellular levels and metabolic fate with appropriate spatiotemporal precision. Here, we report on clickable, azobenzene-containing ceramides, caCers, as photoswitchable metabolic substrates to exert optical control over sphingolipid production in cells. Combining atomic force microscopy on model bilayers with metabolic tracing studies in cells, we demonstrate that light-induced alterations in the lateral packing of caCers lead to marked differences in their metabolic conversion by sphingomyelin synthase and glucosylceramide synthase. These changes in metabolic rates are instant and reversible over several cycles of photoswitching. Our findings disclose new opportunities to probe the causal roles of ceramides and their metabolic derivatives in a wide array of sphingolipid-dependent cellular processes with the spatiotemporal precision of light.


Asunto(s)
Ceramidas/metabolismo , Ceramidas/efectos de la radiación , Luz , Esfingolípidos/biosíntesis , Mezclas Complejas , Glucosiltransferasas/metabolismo , Células HeLa , Humanos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Levaduras/enzimología
17.
Proc Natl Acad Sci U S A ; 115(38): E8919-E8928, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30185559

RESUMEN

Seizures induced by visual stimulation (photosensitive epilepsy; PSE) represent a common type of epilepsy in humans, but the molecular mechanisms and genetic drivers underlying PSE remain unknown, and no good genetic animal models have been identified as yet. Here, we show an animal model of PSE, in Drosophila, owing to defective cortex glia. The cortex glial membranes are severely compromised in ceramide phosphoethanolamine synthase (cpes)-null mutants and fail to encapsulate the neuronal cell bodies in the Drosophila neuronal cortex. Expression of human sphingomyelin synthase 1, which synthesizes the closely related ceramide phosphocholine (sphingomyelin), rescues the cortex glial abnormalities and PSE, underscoring the evolutionarily conserved role of these lipids in glial membranes. Further, we show the compromise in plasma membrane structure that underlies the glial cell membrane collapse in cpes mutants and leads to the PSE phenotype.


Asunto(s)
Corteza Cerebral/enzimología , Proteínas de Drosophila/genética , Epilepsia Refleja/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Neuroglía/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Animales , Animales Modificados Genéticamente , Membrana Celular/enzimología , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Drosophila melanogaster , Humanos , Masculino , Mutación , Neuroglía/citología , Neuronas/citología , Neuronas/enzimología , Esfingomielinas/metabolismo
18.
J Lipid Res ; 59(3): 515-530, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29343537

RESUMEN

Ceramides are central intermediates of sphingolipid metabolism with dual roles as mediators of cellular stress signaling and mitochondrial apoptosis. How ceramides exert their cytotoxic effects is unclear and their poor solubility in water hampers a search for specific protein interaction partners. Here, we report the application of a photoactivatable and clickable ceramide analog, pacCer, to identify ceramide binding proteins and unravel the structural basis by which these proteins recognize ceramide. Besides capturing ceramide transfer protein (CERT) from a complex proteome, our approach yielded CERT-related steroidogenic acute regulatory protein D7 (StarD7) as novel ceramide binding protein. Previous work revealed that StarD7 is required for efficient mitochondrial import of phosphatidylcholine (PC) and serves a critical role in mitochondrial function and morphology. Combining site-directed mutagenesis and photoaffinity labeling experiments, we demonstrate that the steroidogenic acute regulatory transfer domain of StarD7 harbors a common binding site for PC and ceramide. While StarD7 lacks robust ceramide transfer activity in vitro, we find that its ability to shuttle PC between model membranes is specifically affected by ceramides. Besides demonstrating the suitability of pacCer as a tool to hunt for ceramide binding proteins, our data point at StarD7 as a candidate effector protein by which ceramides may exert part of their mitochondria-mediated cytotoxic effects.


Asunto(s)
Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Lípidos , Proteínas Portadoras/biosíntesis , Células HeLa , Humanos , Mitocondrias/metabolismo
19.
Biosci Rep ; 37(4)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28659495

RESUMEN

Ceramides are essential precursors of sphingolipids with a dual role as mediators of apoptotic cell death. Previous work revealed that the ER-resident ceramide phosphoethanolamine (CPE) synthase SMSr/SAMD8 is a suppressor of ceramide-mediated apoptosis in cultured cells. Anti-apoptotic activity of SMSr requires a catalytically active enzyme but also relies on the enzyme's N-terminal sterile α-motif or SAM domain. Here, we demonstrate that SMSr itself is a target of the apoptotic machinery. Treatment of cells with staurosporine or the death receptor ligand FasL triggers caspase-mediated cleavage of SMSr at a conserved aspartate located downstream of the enzyme's SAM domain and upstream of its first membrane span. Taking advantage of reconstitution experiments with SMSr produced in a cell-free expression system, specific caspase-inhibitors and gene silencing approaches, we show that SMSr is a novel and specific substrate of caspase-6, a non-conventional effector caspase implicated in Huntington's and Alzheimer's diseases. Our findings underscore a role of SMSr as negative regulator of ceramide-induced cell death and, in view of a prominent expression of the enzyme in brain, raise questions regarding its potential involvement in neurodegenerative disorders.


Asunto(s)
Apoptosis , Caspasa 6/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Caspasa 6/genética , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Células HeLa , Humanos , Dominios Proteicos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
20.
Biochim Biophys Acta Mol Cell Res ; 1864(9): 1450-1458, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28554771

RESUMEN

Membrane contact sites (MCSs) are regions where two organelles are closely apposed to facilitate molecular communication and promote a functional integration of compartmentalized cellular processes. There is growing evidence that MCSs play key roles in controlling intracellular lipid flows and distributions. Strikingly, even organelles connected by vesicular trafficking exchange lipids en bulk via lipid transfer proteins that operate at MCSs. Herein, we describe how MCSs developed into central hubs of lipid logistics during the evolution of eukaryotic cells. We then focus on how modern eukaryotes exploit MCSs to help solve a major logistical problem, namely to preserve the unique lipid mixtures of their early and late secretory organelles in the face of extensive vesicular trafficking. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.


Asunto(s)
Membrana Celular/metabolismo , Metabolismo de los Lípidos , Animales , Evolución Molecular , Humanos , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Vías Secretoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...