Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 11(1)2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379369

RESUMEN

Cytokinins (CKs) are a class of phytohormones affecting many aspects of plant growth and development. In the complex process of CK homeostasis in plants, N-glucosylation represents one of the essential metabolic pathways. Its products, CK N7- and N9-glucosides, have been largely overlooked in the past as irreversible and inactive CK products lacking any relevant physiological impact. In this work, we report a widespread distribution of CK N-glucosides across the plant kingdom proceeding from evolutionary older to younger plants with different proportions between N7- and N9-glucosides in the total CK pool. We show dramatic changes in their profiles as well as in expression levels of the UGT76C1 and UGT76C2 genes during Arabidopsis ontogenesis. We also demonstrate specific physiological effects of CK N-glucosides in CK bioassays including their antisenescent activities, inhibitory effects on root development, and activation of the CK signaling pathway visualized by the CK-responsive YFP reporter line, TCSv2::3XVENUS. Last but not least, we present the considerable impact of CK N7- and N9-glucosides on the expression of CK-related genes in maize and their stimulatory effects on CK oxidase/dehydrogenase activity in oats. Our findings revise the apparent irreversibility and inactivity of CK N7- and N9-glucosides and indicate their involvement in CK evolution while suggesting their unique function(s) in plants.


Asunto(s)
Citocininas/genética , Evolución Molecular , Glucósidos/genética , Glucosiltransferasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oxidorreductasas/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
2.
Front Plant Sci ; 9: 1676, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542354

RESUMEN

Barley is one of the most important cereals, which is used for breweries, animal and human feeds. Genetic manipulation of plant hormone cytokinins may influence several physiological processes, besides others stress tolerance, root formation and crop yield. In planta, endogenous cytokinin status is finely regulated by the enzyme cytokinin dehydrogenase (EC 1.5.99.12; CKX), that irreversible degrades the side chain of adenine-derived isoprenoid cytokinins. Increasing grain yield by mean of manipulation of endogenous cytokinin content was assayed by the silencing of the HvCKX1 gene. Moreover, to elucidate the putative role of HvCKX1 gene on grain production, knocked-out Hvckx1 mutant plants were generated using the RNA-guided Cas9 system. Homozygote transgenic plants with silenced HvCKX1 gene and azygous knock-out Hvckx1 mutants have been selected and analyzed. Both reduced expression of HvCKX1 gene and CKX activity were measured in different stages of barley grain development. Phenotyping of the transgenic lines revealed reduced root growth, however, plants produced more tillers and grains than azygous wild-type controls and the total yield was increased up to 15 per cent. Although plant productivity was increased, total grain biomass was decreased to 80% of WT grains. RNA-seq analysis of knock-down transgenic lines revealed that several important macronutrient transporters were downregulated in the stage of massive starch accumulation. It suggests that local accumulation of cytokinins negatively affected nutrients flow resulting in reduced grain biomass. Obtained results confirmed the key role of HvCKX1 for regulation of cytokinin content in barley.

4.
N Biotechnol ; 33(5 Pt B): 735-742, 2016 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26777983

RESUMEN

The plant hormones cytokinins are a convenient target of genetic manipulations that bring benefits in biotechnological applications. The present work demonstrates the importance of the subcellular compartmentalization of cytokinins on the model dicot plant Arabidopsis thaliana and monocot crop Hordeum vulgare. The method of protoplast and vacuole isolation combined with precise cytokinin analysis and recovery assay of a vacuolar marker protein were used to quantify the contents of individual cytokinin forms in the leaf extracellular space, cell interior and vacuole. The data obtained for wild type plants and in each case a specific mutant line allow comparing the effect of genetic manipulations on the hormone distribution and homeostatic balance of cytokinins in the modified plants.


Asunto(s)
Arabidopsis/metabolismo , Citocininas/metabolismo , Hordeum/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotecnología , Compartimento Celular , Espacio Extracelular/metabolismo , Hordeum/crecimiento & desarrollo , Espacio Intracelular/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Protoplastos/metabolismo , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA