Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 892: 164670, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37290643

RESUMEN

Microplastic contamination in soil has become a global environmental threat as it adversely affects terrestrial organisms like earthworms as well as soil properties. Especially biodegradable polymers have recently been used as an alternative to conventional polymer types, although their impact remains poorly understood. Thus, we studied the effect of conventional (polystyrene: PS, polyethylene terephthalate: PET, polypropylene: PP) versus aliphatic polyesters classified as biodegradable polymers (poly-(l-lactide): PLLA, polycaprolactone: PCL) on the earthworm Eisenia fetida and soil properties (pH and cation exchange capacity). We addressed direct effects on the weight gain and reproductive success of E. fetida, and indirect effects, like changes in the gut microbial composition as well as the production of short-chain fatty acids by the gut microbiota. Earthworms were exposed for eight weeks in an artificial soil amended with two environmentally relevant concentrations (1 % and 2.5 % (w/w)) of the different microplastic types. PLLA and PCL boosted the number of cocoons produced by 135 % and 54 %, respectively. Additionally, exposure to these two polymers increased number of hatched juveniles, changed gut microbial beta-diversity, and increased the production of the short chain fatty acid lactate compared to the control treatments. Interestingly, we also found a positive effect of PP on the earthworm's bodyweight and reproductive success. The interaction of microplastic and earthworms decreased soil pH by about 1.5 units in the presence of PLLA and PCL. No polymer effect on the cation exchange capacity of soil was found. In general, neither the presence of conventional nor biodegradable polymers had any adverse effects on any of the studied endpoints. Our results suggest that the effects of microplastic highly depend on the polymer type, and that the degradation of biodegradable polymers might be enhanced in the gut of earthworms, which implies that they may use biodegradable polymers as a potential carbon source.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Oligoquetos/metabolismo , Plásticos/metabolismo , Microplásticos/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , Reproducción
2.
Environ Microbiol ; 25(12): 2776-2791, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37041018

RESUMEN

Microplastic (MP) is an environmental burden and enters food webs via ingestion by macrofauna, including isopods (Porcellio scaber) in terrestrial ecosystems. Isopods represent ubiquitously abundant, ecologically important detritivores. However, MP-polymer specific effects on the host and its gut microbiota are unknown. We tested the hypothesis that biodegradable (polylactic acid [PLA]) and non-biodegradable (polyethylene terephthalate [PET]; polystyrene [PS]) MPs have contrasting effects on P. scaber mediated by changes of the gut microbiota. The isopod fitness after an 8-week MP-exposure was generally unaffected, although the isopods showed avoidance behaviour to PS-food. MP-polymer specific effects on gut microbes were detected, including a stimulation of microbial activity by PLA compared with MP-free controls. PLA stimulated hydrogen emission from isopod guts, while PET and PS were inhibitory. We roughly estimated 107 kg year-1 hydrogen emitted from the isopods globally and identified their guts as anoxic, significant mobile sources of reductant for soil microbes despite the absence of classical obligate anaerobes, likely due to Enterobacteriaceae-related fermentation activities that were stimulated by lactate generated during PLA-degradation. The findings suggest negative effects of PET and PS on gut fermentation, modulation of important isopod hydrogen emissions by MP pollution and the potential of MP to affect terrestrial food webs.


Asunto(s)
Isópodos , Microbiota , Animales , Isópodos/fisiología , Microplásticos/farmacología , Plásticos , Ingestión de Alimentos , Poliésteres
3.
Sci Total Environ ; 838(Pt 3): 156387, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35660620

RESUMEN

Terrestrial ecosystems are exposed to many anthropogenic pollutants. Non-target effects of pesticides and fertilizers have put agricultural intensification in the focus as a driver for biodiversity loss. However, other pollutants, such as heavy metals, particulate matter, or microplastic also enter the environment, e.g. via traffic and industrial activities in urban areas. As soil acts as a potential sink for such pollutants, soil invertebrates like earthworms may be particularly affected by them. Under natural conditions soil invertebrates will likely be exposed to combinations of pollutants simultaneously, which may result in stronger negative effects if pollutants act synergistically. Within this work we study how multiple pollutants affect the soil-dwelling, substrate feeding earthworm Eisenia fetida. We compared the effects of the single stressors, polystyrene microplastic fragments, polystyrene fibers, brake dust and carbon black, with the combined effect of these pollutants when applied as a mixture. Endpoints measured were survival, increase in body weight, reproductive fitness, and changes in three oxidative stress markers (glutathione S-transferase, catalase and malondialdehyde). We found that among single pollutant treatments, brake dust imposed the strongest negative effects on earthworms in all measured endpoints including increased mortality rates. Sub-lethal effects were found for all pollutants. Exposing earthworms to all four pollutants simultaneously led to effects on mortality and oxidative stress markers that were smaller than expected by the respective null models. These antagonistic effects are likely a result of the adsorption of toxic substances found in brake dust to the other pollutants. With this study we show that effects of combinations of pollutants cannot necessarily be predicted from their individual effects and that combined effects will likely depend on identity and concentration of the pollutants.


Asunto(s)
Contaminantes Ambientales , Oligoquetos , Contaminantes del Suelo , Animales , Polvo , Ecosistema , Microplásticos , Plásticos/toxicidad , Poliestirenos , Suelo/química , Contaminantes del Suelo/análisis
4.
Ecotoxicology ; 31(2): 221-233, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34791607

RESUMEN

The earthworm Eisenia fetida is a commonly used model organism for unspecific soil feeders in ecotoxicological studies. Its intestinal cells are the first to encounter possible pollutants co-ingested by the earthworm, which makes them prime candidates for studies of toxic effects of environmental pollutants on the cellular as compared to the organismic level. In this context, the aim of this study was to demonstrate the suitability of preparations of primary intestinal E. fetida cells for in vitro ecotoxicological studies. For this purpose, a suitable isolation and cultivation protocol was established. Cells were isolated directly from the intestine, maintaining >85% viability during subsequent cultivations (up to 144 h). Exposure to established pollutants and soil elutriates comprising silver nanoparticles and metal ions (Cu2+, Cd2+) induced a significant decrease in the metabolic activity of the cells. In case of microplastic particles (MP particles), namely 0.2, 0.5, 2.0, and 3.0 µm diameter polystyrene (PS) beads as well as 0.5 and 2.0 µm diameter polylactic acid (PLA) beads, no active uptake was observed. Slight positive as well as negative dose and size dependent effects on the metabolism were seen, which to some extent might correlate with effects on the organismic level.


Asunto(s)
Nanopartículas del Metal , Oligoquetos , Contaminantes del Suelo , Animales , Intestinos/química , Nanopartículas del Metal/toxicidad , Plásticos/metabolismo , Plásticos/farmacología , Plata/metabolismo , Suelo , Contaminantes del Suelo/análisis
5.
Front Zool ; 18(1): 13, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33752683

RESUMEN

BACKGROUND: Worker reproduction has an important influence on the social cohesion and efficiency of social insect colonies, but its role in the success of invasive ants has been neglected. We used observations of 233 captive colonies, laboratory experiments, and genetic analyses to investigate the conditions for worker reproduction in the invasive Anoplolepis gracilipes (yellow crazy ant) and its potential cost on interspecific defence. We determined the prevalence of worker production of males and whether it is triggered by queen absence; whether physogastric workers with enlarged abdomens are more likely to be reproductive, how normal workers and physogastric workers compare in their contributions to foraging and defence; and whether worker-produced males and males that could have been queen- or worker-produced differ in their size and heterozygosity. RESULTS: Sixty-six of our 233 captive colonies produced males, and in 25 of these, some males could only have been produced by workers. Colonies with more workers were more likely to produce males, especially for queenless colonies. The average number of days between the first appearance of eggs and adult males in our colonies was 54.1 ± 10.2 (mean ± SD, n = 20). In our laboratory experiment, queen removal triggered an increase in the proportion of physogastric workers. Physogastric workers were more likely to have yolky oocytes (37-54.9%) than normal workers (2-25.6%), which is an indicator of fertile or trophic egg production. Physogastric workers were less aggressive during interspecific aggression tests and foraged less than normal workers. The head width and wing length of worker-produced males were on average 4.0 and 4.3% greater respectively than those of males of undetermined source. Our microsatellite DNA analyses indicate that 5.5% of worker-produced males and 14.3% of males of undetermined source were heterozygous, which suggests the presence of diploid males and/or genetic mosaics in A. gracilipes. CONCLUSIONS: Our experimental work provides crucial information on worker reproduction in A. gracilipes and its potential cost to colony defence. The ability of A. gracilipes workers to produce males in the absence of queens may also contribute to its success as an invasive species if intranidal mating can take place between virgin queens and worker-produced males.

6.
Front Insect Sci ; 1: 761881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38468894

RESUMEN

Insects are integral to terrestrial life and provide essential ecosystem functions such as pollination and nutrient cycling. Due to massive declines in insect biomass, abundance, or species richness in recent years, the focus has turned to find their causes. Anthropogenic pollution is among the main drivers of insect declines. Research addressing the effects of pollutants concentrates on aquatic insects and pollinators, despite the apparent risk of contaminated soils. Pollutants accumulating in the soil might pose a significant threat because concentrations tend to be high and different pollutants are present simultaneously. Here, we exposed queens of the black garden ant Lasius niger at the colony founding stage to different concentrations and combinations of pollutants (brake dust, soot, microplastic particles and fibers, manure) to determine dose-dependent effects and interactions between stressors. As proxies for colony founding success, we measured queen survival, the development time of the different life stages, the brood weight, and the number of offspring. Over the course of the experiment queen mortality was very low and similar across treatments. Only high manure concentrations affected the colony founding success. Eggs from queens exposed to high manure concentrations took longer to hatch, which resulted in a delayed emergence of workers. Also, fewer pupae and workers were raised by those queens. Brake dust, soot and plastic particles did not visibly affect colony founding success, neither as single nor as multiple stressors. The application of manure, however, affected colony founding in L. niger negatively underlining the issue of excessive manure application to our environment. Even though anthropogenic soil pollutants seem to have little short-term effects on ant colony founding, studies will have to elucidate potential long-term effects as a colony grows.

7.
Behav Sci (Basel) ; 8(7)2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29966313

RESUMEN

This study examines the effects of dance movement therapy (DMT) on empathy for adults with autism spectrum disorder (ASD). DMT based on the embodiment approach offers body-centered interventions, such as mirroring techniques, to address the needs of ASD patients. Accordingly, findings of a feasibility study suggest that DMT may be an effective approach for clients on the ASD spectrum. The present study is a randomized controlled trial that was conducted as a multicenter study within the framework of the EU-funded research project TESIS (Toward an Embodied Science of Intersubjectivity), and employed a two-factorial between-subject design. The treatment group (n = 35) participated in a 10-week manualized DMT intervention, whereas the control group (n = 22) received treatment only after a waiting period. Empathy, measured with the Cognitive and Emotional Empathy Questionnaire (CEEQ), was the main variable of interest, analyzed by a repeated measures analysis of variance. In order to also include incomplete data cases, we used the expectation-maximization algorithm for missing data estimation. Results suggest no significant changes in overall empathy between groups. We discuss the results and limitations, as well as future research options.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA