Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39422295

RESUMEN

The Fermi level position at the interface of a heterostructure is a critical factor for device functionality, strongly influenced by surface-related phenomena. In this study, contactless electroreflectance (CER) was utilized for the first time to investigate the built-in electric field in MXene/GaN structures with the goal of understanding the carrier transfer across the MXene/GaN interface. Five MXenes with high work functions were examined: Cr2C, Mo2C, V2C, V4C3, and Ti3C2. The physicochemical properties of the MXene/GaN structures were analyzed by using X-ray and UV photoelectron spectroscopies. It was shown that upon the coverage of the GaN surface by all investigated MXenes, a shift in the position of the surface Fermi level occurs, consequently raising the interface barrier. Additionally, the physicochemical stability of MXenes on the GaN surface was studied after annealing the structures at 750 °C. Our findings indicate that the annealing process increases the barrier height and the ionization energies of all studied structures. Furthermore, it has been shown that removing excess MXene material from the surface did not significantly impact the built-in electric field, emphasizing the robust physicochemical stability of the MXenes on the GaN surface. To validate the potential of engineering of MXene/GaN interface barrier, Schottky diodes with MXenes exhibiting the highest barrier height (Mo2C and V2C) were demonstrated.

2.
Ultramicroscopy ; 248: 113713, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36933435

RESUMEN

High-resolution scanning probe microscopy (SPM) is a fundamental and efficient technology for surface characterization of modern materials at the subnanometre scale. The bottleneck of SPM is the probe and scanning tip. Materials with stable electrical, thermal, and mechanical properties for high-aspect-ratio (AR) tips are continuously being developed to improve their accuracy. Among these, GaN is emerging as a significant contender that serves as a replacement for standard Si probes. In this paper, for the first time, we present an approach that demonstrates the application of GaN microrods (MRs) as high-AR SPM probes. GaN MRs were grown using molecular beam epitaxy, transferred and mounted on a cantilever using focused electron beam-induced deposition and milled in a whisker tip using a focused ion beam in a scanning electron/ion microscope. The presence of a native oxide layer covering the GaN MR surface was confirmed by X-ray photoelectron spectroscopy. Current-voltage map measurements are also presented to indicate the elimination of the native oxide layer from the tip surface. The utility of the designed probes was tested using conductive atomic force microscopy and a 24-hour durability test in contact mode atomic force microscopy. Subsequently, the graphene stacks were imaged.

3.
ACS Omega ; 7(28): 24777-24784, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874245

RESUMEN

Due to the antisurfactant properties of arsenic atoms, the self-induced dodecagonal GaN microrods can be grown by molecular beam epitaxy (MBE) in Ga-rich conditions. Since temperature is a key parameter in MBE growth, the role of temperature in the growth of GaN microrods is investigated. The optimal growth temperature window for the formation of GaN microrods is observed to be between 760 and 800 °C. Lowering the temperature to 720 °C did not change the growth mechanism, but the population of irregular and amorphous microrods increased. On the other hand, increasing the growth temperature up to 880 °C interrupts the growth of GaN microrods, due to the re-evaporation of the gallium from the surface. The incorporation of As in GaN microrods is negligible, which is confirmed by X-ray diffraction and transmission electron microscopy. Moreover, the photoluminescence and cathodoluminescence characteristics typical for GaN are observed for individual GaN microrods, which additionally confirms that arsenic is not incorporated inside microrods. When the growth temperature is increased, the emission related to the band gap decreases in favor of the defect-related emission. This is typical for bulk GaN and attributed to an increase in the point defect concentration for GaN microrods grown at lower temperatures.

4.
ACS Appl Mater Interfaces ; 14(4): 6131-6137, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35043636

RESUMEN

Hexagonal boron nitride (h-BN), together with other members of the van der Waals crystal family, has been studied for over a decade, both in terms of fundamental and applied research. Up to now, the spectrum of h-BN-based devices has broadened significantly, and systems containing the h-BN/III-V junctions have gained substantial interest as building blocks in, inter alia, light emitters, photodetectors, or transistor structures. Therefore, the understanding of electronic phenomena at the h-BN/III-V interfaces becomes a question of high importance regarding device engineering. In this study, we present the investigation of electronic phenomena at the h-BN/GaN interface by means of contactless electroreflectance (CER) spectroscopy. This nondestructive method enables precise determination of the Fermi level position at the h-BN/GaN interface and the investigation of carrier transport across the interface. CER results showed that h-BN induces an enlargement of the surface barrier height at the GaN surface. Such an effect translates to Fermi level pinning deeper inside the GaN band gap. As an explanation, we propose a mechanism based on electron transfer from GaN surface states to the native acceptor states in h-BN. We reinforced our findings by thorough structural characterization and demonstration of the h-BN/GaN Schottky diode. The surface barriers obtained from CER (0.60 ± 0.09 eV for GaN and 0.91 ± 0.12 eV for h-BN/GaN) and electrical measurements are consistent within the experimental accuracy, proving that CER is an excellent tool for interfacial studies of 2D/III-V hybrids.

5.
Sci Rep ; 6: 34392, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698359

RESUMEN

We present evidence for the existence of a hybrid state of Tamm plasmons and microcavity exciton polaritons in a II-VI material based microcavity sample covered with an Ag metal layer. The bare cavity mode shows a characteristic anticrossing with the Tamm-plasmon mode, when microreflectivity measurements are performed for different detunings between the Tamm plasmon and the cavity mode. When the Tamm-plasmon mode is in resonance with the cavity polariton four hybrid eigenstates are observed due to the coupling of the cavity-photon mode, the Tamm-plasmon mode, and the heavy- and light-hole excitons. If the bare Tamm-plasmon mode is tuned, these resonances will exhibit three anticrossings. Experimental results are in good agreement with calculations based on the transfer matrix method as well as on the coupled-oscillators model. The lowest hybrid eigenstate is observed to be red shifted by about 13 meV with respect to the lower cavity polariton state when the Tamm plasmon is resonantly coupled with the cavity polariton. This spectral shift which is caused by the metal layer can be used to create a trapping potential channel for the polaritons. Such channels can guide the polariton propagation similar to one-dimensional polariton wires.

6.
Phys Rev Lett ; 114(18): 186403, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26001012

RESUMEN

Using angle-resolved Raman spectroscopy, we show that a resonantly excited ground-state exciton-polariton fluid behaves like a nonequilibrium coolant for its host solid-state semiconductor microcavity. With this optical technique, we obtain a detailed measurement of the thermal fluxes generated by the pumped polaritons. We thus find a maximum cooling power for a cryostat temperature of 50 K and below where optical cooling is usually suppressed, and we identify the participation of an ultrafast cooling mechanism. We also show that the nonequilibrium character of polaritons constitutes an unexpected resource: each scattering event can remove more heat from the solid than would be normally allowed using a thermal fluid with normal internal equilibration.

7.
ACS Nano ; 8(10): 9970-8, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25181393

RESUMEN

We present a micropillar cavity where nondesired radial emission is inhibited. The photonic confinement in such a structure is improved by implementation of an additional concentric radial-distributed Bragg reflector. Such a reflector increases the reflectivity in all directions perpendicular to the micropillar axis from a typical value of 15-31% to above 98%. An inhibition of the spontaneous emission of off-resonant excitonic states of quantum dots embedded in the microcavity is revealed by time-resolved experiments. It proves a decreased density of photonic states related to unwanted radial leakage of photons out of the micropillar. For on-resonance conditions, we find that the dot emission rate is increased, evidencing the Purcell enhancement of spontaneous emission. The proposed design can increase the efficiency of single-photon sources and bring to micropillar cavities the functionalities based on lengthened decay times.

8.
Microsc Microanal ; 20(5): 1463-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25010567

RESUMEN

In an earlier publication Rosenauer et al. introduced a method for determination of composition in AlGaN/GaN heterostructures from high-angle annular dark field (HAADF) images. Static atomic displacements (SADs) were neglected during simulation of reference data because of the similar covalent radii of Al and Ga. However, SADs have been shown (Grillo et al.) to influence the intensity in HAADF images and therefore could be the reason for an observed slight discrepancy between measured and nominal concentrations. In the present study parameters of the Stillinger-Weber potential were varied in order to fit computed elastic constants, lattice parameters and bonding energies to experimental ones. A reference data set of HAADF images was simulated, in which the new parameterization was used to account for SADs. Two reference samples containing AlGaN layers with different Al concentrations were investigated and Al concentrations in the layers determined based on the new data set. We found that these concentrations were in good agreement with nominal concentrations as well as concentrations determined using alternative techniques such as strain state analysis and energy dispersive X-ray spectroscopy.

9.
Ultramicroscopy ; 111(8): 1316-27, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21864772

RESUMEN

We suggest a method for chemical mapping that is based on scanning transmission electron microscopy (STEM) imaging with a high-angle annular dark field (HAADF) detector. The analysis method uses a comparison of intensity normalized with respect to the incident electron beam with intensity calculated employing the frozen lattice approximation. This procedure is validated with an In(0.07)Ga(0.93)N layer with homogeneous In concentration, where the STEM results were compared with energy filtered imaging, strain state analysis and energy dispersive X-ray analysis. Good agreement was obtained, if the frozen lattice simulations took into account static atomic displacements, caused by the different covalent radii of In and Ga atoms. Using a sample with higher In concentration and series of 32 images taken within 42 min scan time, we did not find any indication for formation of In rich regions due to electron beam irradiation, which is reported in literature to occur for the parallel illumination mode. Image simulation of an In(0.15)Ga(0.85)N layer that was elastically relaxed with empirical Stillinger-Weber potentials did not reveal significant impact of lattice plane bending on STEM images as well as on the evaluated In concentration profiles for specimen thicknesses of 5, 15 and 50 nm. Image simulation of an abrupt interface between GaN and In(0.15)Ga(0.85)N for specimen thicknesses up to 200 nm showed that artificial blurring of interfaces is significantly smaller than expected from a simple geometrical model that is based on the beam convergence only. As an application of the method, we give evidence for the existence of In rich regions in an InGaN layer which shows signatures of quantum dot emission in microphotoluminescence spectroscopy experiments.

10.
Nanotechnology ; 22(28): 285204, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21654032

RESUMEN

Micropillars of different diameters have been prepared by focused ion beam milling out of a planar ZnTe-based cavity. The monolithic epitaxial structure, deposited on a GaAs substrate, contains CdTe quantum dots embedded in a ZnTe λ-cavity delimited by two distributed Bragg reflectors (DBRs). The high refractive index material of the DBR structure is ZnTe, while for the low index material a short-period triple MgTe/ZnTe/MgSe superlattice is used. The CdTe quantum dots are formed by a novel Zn-induced formation process and are investigated by scanning transmission electron microscopy. Micro-photoluminescence measurements show discrete optical modes for the pillars, in good agreement with calculations based on a vectorial transfer matrix method. The measured quality factor reaches a value of 3100.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...