Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Intervalo de año de publicación
1.
Chemosphere ; 361: 142515, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830460

RESUMEN

The catalytic performance of modified hydroxyapatite nanoparticles, Ca10-xFex-yWy(PO4)6(OH)2, was applied for the degradation of methylene blue (MB), fast green FCF (FG) and norfloxacin (NOR). XPS analysis pointed to the successful partial replacement of Ca by Fe. Under photo-electro-Fenton process, the catalyst Ca4FeII1·92W0·08FeIII4(PO4)6(OH)2 was combined with UVC radiation and electrogenerated H2O2 in a Printex L6 carbon-based gas diffusion electrode. The application of only 10 mA cm-2 resulted in 100% discoloration of MB and FG dyes in 50 min of treatment at pH 2.5, 7.0 and 9.0. The proposed treatment mechanism yielded maximum TOC removal of ∼80% and high mineralization current efficiency of ∼64%. Complete degradation of NOR was obtained in 40 min, and high mineralization of ∼86% was recorded after 240 min of treatment. Responses obtained from LC-ESI-MS/MS are in line with the theoretical Fukui indices and the ECOSAR data. The study enabled us to predict the main degradation route and the acute and chronic toxicity of the by-products formed during the contaminants degradation.


Asunto(s)
Electrodos , Peróxido de Hidrógeno , Hierro , Azul de Metileno , Nanopartículas , Contaminantes Químicos del Agua , Catálisis , Peróxido de Hidrógeno/química , Hierro/química , Azul de Metileno/química , Nanopartículas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Norfloxacino/química , Durapatita/química , Colorantes/química , Procesos Fotoquímicos , Rayos Ultravioleta
2.
J Mol Model ; 29(2): 46, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36656418

RESUMEN

INTRODUCTION: The use of the Cannabis sativa plant by man has been common for centuries due to its numerous therapeutic properties resulting from the compounds present in it, called cannabinoids. However, the use of these compounds as drugs is still limited due to the psychotropic effects caused by them. The proteins that act as receptors of cannabinoid compounds were identified and characterized, being called CB1 and CB2 receptors. There is a series of 50 cannabinoid compounds that was studied through quantum and chemometric methods in order to obtain a mathematical model that could relate the structure of these compounds to their psychotropic activity. That model proved to be effective by predicting the psychoactivity of the 50 compounds from the series and elucidating relevant characteristics that imply in psychoactivity. However, most of these 50 compounds do not have experimental data of biological activity with CB1 and CB2 receptors. OBJECTIVES: This study aims to generate QSAR models in order to predict the biological activity of the 50 cannabinoid compounds and then relate the predicted biological activity values to the already known psychoactivity. METHODS: Another series of cannabinoid compounds was selected to generate and validate QSAR models, aiming to predict the biological activity of the 50 cannabinoid compounds with both CB1 and CB2 receptors. RESULTS: The PLS-CB1 and PLS-CB2 QSAR models were generated and validated in this work, proving to be highly predictive, and the biological activities (pK ) of the 50 cannabinoid compounds were predicted by them. It is important to highlight compounds Ic14, Ic18, and Ic19 (psychotropic inactive) which presented higher predicted pK values than the main cannabinoid compounds (Δ9-THC and Δ8-THC). Also, compound Ic21 stood out as the highest value of the predicted biological activities in the interaction with the CB2 receptor. CONCLUSION: The generated PLS models and the predicted pKi values of the 50 cannabinoid compounds can provide valuable information in the drug design of new cannabinoid compounds that can interact with CB1 and CB2 receptors in a therapeutic way with no psychotropic effects.


Asunto(s)
Cannabinoides , Humanos , Masculino , Cannabinoides/farmacología , Cannabinoides/uso terapéutico
3.
Expert Opin Drug Discov ; 17(9): 929-947, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35983695

RESUMEN

INTRODUCTION: Modern drug discovery is generally accessed by useful information from previous large databases or uncovering novel data. The lack of biological and/or chemical data tends to slow the development of scientific research and innovation. Here, approaches that may help provide solutions to generate or obtain enough relevant data or improve/accelerate existing methods within the last five years were reviewed. AREAS COVERED: One-shot learning (OSL) approaches, structural modeling, molecular docking, scoring function space (SFS), molecular dynamics (MD), and quantum mechanics (QM) may be used to amplify the amount of available data to drug design and discovery campaigns, presenting methods, their perspectives, and discussions to be employed in the near future. EXPERT OPINION: Recent works have successfully used these techniques to solve a range of issues in the face of data scarcity, including complex problems such as the challenging scenario of drug design aimed at intrinsically disordered proteins and the evaluation of potential adverse effects in a clinical scenario. These examples show that it is possible to improve and kickstart research from scarce available data to design and discover new potential drugs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
4.
J Biomol Struct Dyn ; 40(23): 12516-12525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34463224

RESUMEN

Bis(2-ethylhexyl) phthalate (DEHP) has been widely used for the production of plastics, and the compound has also been found to act as endocrine disruptor. Exposure to DEHP has been found to cause several hormonal problems, including decreased fertility. Due to the environmental and health risks posed by the use of DEHP, the present study employed molecular docking, molecular dynamics, and free energy analyses (MM-GBSA, MM-PBSA, and SIE) aiming at evaluating the action of DEHP and that of two other compounds (ATEC and DL9TH), tested as potential DEHP substitutes, on two hormone receptors (sex hormone-binding globulin - SHBG - and progesterone receptor - PR). The results obtained showed that ATEC may be a good substitute for DEHP in the production of plastics, such as PVC, considering that the compound recorded the greatest free energy values with respect to binding with SHBG (-31.36 kcal/mol obtained from MM-GBSA; -20.28 kcal/mol for MM-PBSA, and -7.40 for SIE) and PR (-36.40 kcal/mol for MM-GBSA; -27.00 kcal/mol for MM-PBSA, and -8.51 kcal/mol for SIE) - this shows that ATEC presented the least activity in the two hormone receptors. The findings of this study provide relevant insights on potential substitutes for DEHP and help shed light on the action of these new efficient substances, which have similar properties to DEHP (ATEC and DL9TH) yet do not act as endocrine disruptors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Dietilhexil Ftalato , Disruptores Endocrinos , Dietilhexil Ftalato/química , Plastificantes/química , Plastificantes/metabolismo , Disruptores Endocrinos/química , Simulación del Acoplamiento Molecular , Plásticos , Hormonas
5.
J Mol Model ; 27(10): 297, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34558019

RESUMEN

Depression affects more than 300 million people around the world and can lead to suicide. About 30% of patients on treatment for depression drop out of therapy due to side effects or to latency time associated to therapeutic effects. 5-HT receptor, known as serotonin, is considered the key in depression treatment. Arylpiperazine compounds are responsible for several pharmacological effects and are considered as ligands in serotonin receptors, such as the subtype 5-HT2a. Here, in silico studies were developed using partial least squares (PLSs) and artificial neural networks (ANNs) to design new arylpiperazine compounds that could interact with the 5-HT2a receptor. First, molecular and electronic descriptors were calculated and posteriorly selected from correlation matrixes and genetic algorithm (GA). Then, the selected descriptors were used to construct PLS and ANN models that showed to be robust and predictive. Lastly, new arylpiperazine compounds were designed and their biological activity values were predicted by both PLS and ANN models. It is worth to highlight compounds G5 and G7 (predicted by the PLS model) and G3 and G15 (predicted by the ANN model), whose predicted pIC50 values were as high as the three highest values from the arylpiperazine original set studied here. Therefore, it can be asserted that the two models (PLS and ANN) proposed in this work are promising for the prediction of the biological activity of new arylpiperazine compounds and may significantly contribute to the design of new drugs for the treatment of depression.


Asunto(s)
Antidepresivos/química , Antidepresivos/farmacología , Piperazinas/química , Relación Estructura-Actividad Cuantitativa , Receptor de Serotonina 5-HT2A/metabolismo , Algoritmos , Humanos , Análisis de los Mínimos Cuadrados , Redes Neurales de la Computación , Piperazinas/farmacología , Reproducibilidad de los Resultados
6.
Curr Top Med Chem ; 21(22): 1999-2017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225623

RESUMEN

BACKGROUND: Natural products have been universally approached in the research of novel trends useful to detail the essential paths of the life sciences and as a strategy for pharmacotherapeutics. OBJECTIVE: This work focuses on further modification to the 6-hydroxy-flavanone building block aiming to obtain improved BCR-ABL kinase inhibitors. METHODS: Ether derivatives were obtained from Williamson synthesis and triazole from Microwave- assisted click reaction. Chemical structures were finely characterized through IR, 1H and 13C NMR and HRMS. They were tested for their inhibitory activity against BCR-ABL kinase. RESULTS: Two inhibitors bearing a triazole ring as a pharmacophoric bridge demonstrated the strongest kinase inhibition at IC50 value of 364 nM (compound 3j) and 275 nM (compound 3k). CONCLUSION: 6-hydroxy-flavanone skeleton can be considered as a promising core for BCR-ABL kinase inhibitors.


Asunto(s)
Flavonoides/síntesis química , Flavonoides/farmacología , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología
7.
Molecules ; 26(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34299391

RESUMEN

In the present study, the phytochemical study of the n-hexane extract from flowers of Nectandra leucantha (Lauraceae) afforded six known neolignans (1-6) as well as one new metabolite (7), which were characterized by analysis of NMR, IR, UV, and ESI-HRMS data. The new compound 7 exhibited potent activity against the clinically relevant intracellular forms of T. cruzi (amastigotes), with an IC50 value of 4.3 µM and no observed mammalian cytotoxicity in fibroblasts (CC50 > 200 µM). Based on the results obtained and our previous antitrypanosomal data of 50 natural and semi-synthetic related neolignans, 2D and 3D molecular modeling techniques were employed to help the design of new neolignan-based compounds with higher activity. The results obtained from the models were important to understand the main structural features related to the biological response of the neolignans and to aid in the design of new neolignan-based compounds with better biological activity. Therefore, the results acquired from phytochemical, biological, and in silico studies showed that the integration of experimental and computational techniques consists of a powerful tool for the discovery of new prototypes for development of new drugs to treat CD.


Asunto(s)
Productos Biológicos/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Simulación por Computador , Descubrimiento de Drogas , Lauraceae/química , Lignanos/farmacología , Tripanocidas/farmacología , Animales , Fibroblastos/efectos de los fármacos , Riñón/efectos de los fármacos , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Fitoquímicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Trypanosoma cruzi/efectos de los fármacos
8.
J Mol Graph Model ; 104: 107844, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33529936

RESUMEN

Alzheimer's Disease (AD) is the most frequent illness and cause of death amongst the age related-neurodegenerative disorders. The Alzheimer's Disease International (ADI) reported in 2019 that over 50 million people were living with dementia in the world and this number could potentially be around 152 million by 2050.5-hydroxtryptamine subtype 6 receptor (5-HT6R) has been identified as a potential anti-amnesic drug target and therefore, the administration of 5-HT6R antagonists can likely mitigate the memory loss and intellectual deterioration associated with AD. Herein, computational tools were applied to design new 5-HT6 antagonists and their biological activity values were predicted by our QSAR model obtained from Artificial Neural Networks (ANN). The proposed compounds here from the QSAR-ANN model presented significant biological activity values and some of them have achieved pKi above 9.00. Furthermore, our results suggest that the presence of halogen atoms (especially bromine) linked to the aromatic ring at para-position (HYD) contribute considerably to the increase of the biological activity values while bulky groups in the PI position do not culminate with the increase antagonist activity of compounds here analyzed. Finally, the ADME/Tox profile as well as the synthetic accessibility of new proposed compounds qualify them to go on further with experimental procedures and thenceforward their antagonist effects can be confirmed.


Asunto(s)
Diseño de Fármacos , Serotonina , Humanos , Redes Neurales de la Computación , Receptores de Serotonina , Antagonistas de la Serotonina/farmacología
9.
Biosci Rep ; 41(3)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33624754

RESUMEN

Since the emergence of the new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) at the end of December 2019 in China, and with the urge of the coronavirus disease 2019 (COVID-19) pandemic, there have been huge efforts of many research teams and governmental institutions worldwide to mitigate the current scenario. Reaching more than 1,377,000 deaths in the world and still with a growing number of infections, SARS-CoV-2 remains a critical issue for global health and economic systems, with an urgency for available therapeutic options. In this scenario, as drug repurposing and discovery remains a challenge, computer-aided drug design (CADD) approaches, including machine learning (ML) techniques, can be useful tools to the design and discovery of novel potential antiviral inhibitors against SARS-CoV-2. In this work, we describe and review the current knowledge on this virus and the pandemic, the latest strategies and computational approaches applied to search for treatment options, as well as the challenges to overcome COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Diseño de Fármacos , Descubrimiento de Drogas/métodos , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Inteligencia Artificial , COVID-19/metabolismo , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/fisiología
10.
PLoS One ; 16(1): e0246126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33508008

RESUMEN

Computational methods have been widely used in drug design. The recent developments in machine learning techniques and the ever-growing chemical and biological databases are fertile ground for discoveries in this area. In this study, we evaluated the performance of Deep Learning models in comparison to Random Forest, and Support Vector Regression for predicting the biological activity (pIC50) of ALK-5 inhibitors as candidates to treat cancer. The generalization power of the models was assessed by internal and external validation procedures. A deep neural network model obtained the best performance in this comparative study, achieving a coefficient of determination of 0.658 on the external validation set with mean square error and mean absolute error of 0.373 and 0.450, respectively. Additionally, the relevance of the chemical descriptors for the prediction of biological activity was estimated using Permutation Importance. We can conclude that the forecast model obtained by the deep neural network is suitable for the problem and can be employed to predict the biological activity of new ALK-5 inhibitors.


Asunto(s)
Biología Computacional , Aprendizaje Profundo , Modelos Químicos , Inhibidores de Proteínas Quinasas/química , Receptor Tipo I de Factor de Crecimiento Transformador beta , Evaluación Preclínica de Medicamentos , Humanos , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/química
11.
Med Chem ; 17(3): 247-263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31995015

RESUMEN

INTRODUCTION: The enzyme called dipeptidyl peptidase IV (DPP-IV) is related to the glycemic control associated with the stimulation of the pancreas to produce insulin. So, its inhibition is a good strategy for the treatment of type 2 diabetes mellitus. METHODS: In this study, we have employed molecular modeling strategies such as CoMFA, molecular docking, molecular dynamics, and binding free energy calculations of a set of DPP-IV inhibitors in order to understand the main characteristics related to the biological activity of these ligands against the enzyme. RESULTS: The models obtained from CoMFA presented significant values of internal (0.768) and external (0.988) validations. Important interactions with some residues, such as Glu205, Tyr666, Arg125, Ser630, Phe357 and Tyr662, were also identified. In addition, calculations of the electronic properties allowed relating the LUMO and HOMO energies with the biological activity of the compounds studied. The results obtained from the molecular dynamics simulations and the SIE calculations (ΔG) indicated that the inhibitor 40 increases the stability of the DPP-IV target. CONCLUSIONS: Therefore, from this study, it is possible to propose molecular modifications of these DPP-IV inhibitors in order to improve their potential to treat type 2 diabetes.


Asunto(s)
Simulación por Computador , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Termodinámica
12.
Molecules ; 25(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936488

RESUMEN

Activin-like kinase 5 (ALK-5) is involved in the physiopathology of several conditions, such as pancreatic carcinoma, cervical cancer and liver hepatoma. Cellular events that are landmarks of tumorigenesis, such as loss of cell polarity and acquisition of motile properties and mesenchymal phenotype, are associated to deregulated ALK-5 signaling. ALK-5 inhibitors, such as SB505154, GW6604, SD208, and LY2157299, have recently been reported to inhibit ALK-5 autophosphorylation and induce the transcription of matrix genes. Due to their ability to impair cell migration, invasion and metastasis, ALK-5 inhibitors have been explored as worthwhile hits as anticancer agents. This work reports the development of a structure-based virtual screening (SBVS) protocol aimed to prospect promising hits for further studies as novel ALK-5 inhibitors. From a lead-like subset of purchasable compounds, five molecules were identified as putative ALK-5 inhibitors. In addition, molecular dynamics and binding free energy calculations combined with pharmacokinetics and toxicity profiling demonstrated the suitability of these compounds to be further investigated as novel ALK-5 inhibitors.


Asunto(s)
Antineoplásicos/química , Conformación Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Receptor Tipo I de Factor de Crecimiento Transformador beta/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Sitios de Unión , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Quinolinas/química , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/ultraestructura , Interfaz Usuario-Computador
13.
Med Chem ; 16(6): 784-795, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31309897

RESUMEN

BACKGROUND: Leishmaniosis is a neglected tropical disease and glyceraldehyde 3- phosphate dehydrogenase (GAPDH) is a key enzyme in the design of new drugs to fight this disease. OBJECTIVE: The present study aimed to evaluate potential inhibitors of GAPDH enzyme found in Leishmania mexicana (L. mexicana). METHODS: A search for novel antileishmanial molecules was carried out based on similarities from the pharmacophoric point of view related to the binding site of the crystallographic enzyme using the ZINCPharmer server. The molecules selected in this screening were subjected to molecular docking and molecular dynamics simulations. RESULTS: Consensual analysis of the docking energy values was performed, resulting in the selection of ten compounds. These ligand-receptor complexes were visually inspected in order to analyze the main interactions and subjected to toxicophoric evaluation, culminating in the selection of three compounds, which were subsequently submitted to molecular dynamics simulations. The docking results showed that the selected compounds interacted with GAPDH from L. mexicana, especially by hydrogen bonds with Cys166, Arg249, His194, Thr167, and Thr226. From the results obtained from molecular dynamics, it was observed that one of the loop regions, corresponding to the residues 195-222, can be related to the fitting of the substrate at the binding site, assisting in the positioning and the molecular recognition via residues responsible for the catalytic activity. CONCLUSION: The use of molecular modeling techniques enabled the identification of promising compounds as inhibitors of the GAPDH enzyme from L. mexicana, and the results obtained here can serve as a starting point to design new and more effective compounds than those currently available.


Asunto(s)
Antipruriginosos/síntesis química , Antipruriginosos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Leishmania mexicana/enzimología , Diseño de Fármacos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Programas Informáticos , Relación Estructura-Actividad , Termodinámica
14.
Eur J Med Chem ; 176: 162-174, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31103897

RESUMEN

Chagas disease is a neglected protozoan disease that affects more than eight million people in developing countries. Due to the limited number and toxicity profiles of therapies in current use, new drugs are urgently needed. In previous studies, we reported the isolation of two related antitrypanosomal neolignans from Nectandra leucantha (Lauraceae). In this work, a semi-synthetic library of twenty-three neolignan derivatives was prepared to explore synthetically accessible structure activity relationships (SAR) against Trypanosoma cruzi. Five compounds demonstrated activity against trypomastigotes (IC50 values from 8 to 64 µM) and eight showed activity against intracellular amastigotes (IC50 values from 7 to 16 µM). Eighteen derivatives demonstrated no mammalian cytotoxicity up to 200 µM. The phenolic acetate derivative of natural dehydrodieugenol B was effective against both parasite forms and eliminated 100% of amastigotes inside macrophages. This compound caused rapid and intense depolarization of the mitochondrial membrane potential, with decreased levels of intracellular reactive oxygen species being observed. Fluorescence assays demonstrated that this derivative affected neither the permeability nor the electric potential of the parasitic plasma membrane, an effect also corroborated by scanning electron microscopy studies. Structure-activity relationship studies (SARs) demonstrated that the presence of at least one allyl side chain on the biaryl ether core was important for antitrypanosomal activity, and that the free phenol is not essential. This set of neolignan derivatives represents a promising starting point for future Chagas disease drug discovery studies.


Asunto(s)
Anisoles/farmacología , Lignanos/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Anisoles/síntesis química , Anisoles/química , Anisoles/toxicidad , Línea Celular , Membrana Celular/efectos de los fármacos , Humanos , Lignanos/síntesis química , Lignanos/química , Lignanos/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química , Tripanocidas/toxicidad , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/metabolismo
15.
Artículo en Portugués | LILACS, SES-SP, SESSP-IALPROD, SES-SP, SESSP-IALACERVO | ID: biblio-1007421

RESUMEN

Chagas disease is a neglected protozoan disease that affects more than eight million people in developing countries. Due to the limited number and toxicity profiles of therapies in current use, new drugs are urgently needed. In previous studies, we reported the isolation of two related antitrypanosomal neo- lignans from Nectandra leucantha (Lauraceae). In this work, a semi-synthetic library of twenty-three neolignan derivatives was prepared to explore synthetically accessible structure activity relationships (SAR) against Trypanosoma cruzi. Five compounds demonstrated activity against trypomastigotes (IC50 values from 8 to 64 mM) and eight showed activity against intracellular amastigotes (IC50 values from 7 to 16 mM). Eighteen derivatives demonstrated no mammalian cytotoxicity up to 200 mM. The phenolic ac- etate derivative of natural dehydrodieugenol


Asunto(s)
Trypanosoma cruzi , Enfermedad , Enfermedad de Chagas
16.
Chem Biol Drug Des ; 92(2): 1475-1487, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29682904

RESUMEN

In this work, a group of α-keto-based inhibitors of the cruzain enzyme with anti-chagas activity was selected for a three-dimensional quantitative structure-activity relationship study (3D-QSAR) combined with molecular dynamics (MD). Firstly, statistical models based on Partial Least Square (PLS) regression were developed employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) descriptors. Validation parameters (q2 and r2 )for the models were, respectively, 0.910 and 0.997 (CoMFA) and 0.913 and 0.992 (CoMSIA). In addition, external validation for the models using a test group revealed r2pred  = 0.728 (CoMFA) and 0.971 (CoMSIA). The most relevant aspect in this study was the generation of molecular fields in both favorable and unfavorable regions based on the models developed. These fields are important to interpret modifications necessary to enhance the biological activities of the inhibitors. This analysis was restricted considering the inhibitors in a fixed conformation, not interacting with their target, the cruzain enzyme. Then, MD was employed taking into account important variables such as time and temperature. MD helped describe the behavior of the inhibitors and their properties showed similar results as those generated by QSAR-3D study.


Asunto(s)
Proteínas Protozoarias/antagonistas & inhibidores , Relación Estructura-Actividad Cuantitativa , Sitios de Unión , Dominio Catalítico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/patología , Cisteína Endopeptidasas/metabolismo , Humanos , Análisis de los Mínimos Cuadrados , Simulación de Dinámica Molecular , Proteínas Protozoarias/metabolismo
17.
Curr Med Chem ; 25(27): 3247-3255, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29484974

RESUMEN

UDP-glucuronosyltransferases (UGTs) are important phase II metabolic enzymes responsible for approximately 40-70% of endo and xenobiotic reactions. It catalyzes the transfer of glucuronic acid to lipophilic substrates, converting them into hydrophilic compounds that are excreted. There are 22 active human UGTs that belong to 4 families. This review focuses on human UGTs, highlighting the most current issues in order to connect all information available and allowing a discussion on the challenges already solved and those in which we need to move forward. Although, several UGTs studies have been conducted, the most recent ones addressing drug-drug interactions and polymorphism issues, there are still bottlenecks to overcome. Tridimensional structure is difficult to obtain due to overexpression, purification, and crystallization problems as well as the action mechanism - since overlapping of substrate specificities renders impasses on the identification of which isoform is responsible for a particular drug metabolic pathway. For this reason, bioinformatic tools are gaining more space, since it is a faster and less expensive reliable methodology that complements in vitro and in vivo researches. Combinations of quantum and molecular methods have become increasingly common, leading to the incorporation of enzyme features comprising their structure, dynamics and chemical reactions. Breakthroughs related to the enzyme, not only enable the discovery of new drugs essential for the treatment of various diseases, but also provide an improved action of the existing drugs.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glucuronosiltransferasa/química , Glucuronosiltransferasa/metabolismo , Humanos , Modelos Moleculares
18.
Front Pharmacol ; 9: 74, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467659

RESUMEN

Medicinal chemistry projects involve some steps aiming to develop a new drug, such as the analysis of biological targets related to a given disease, the discovery and the development of drug candidates for these targets, performing parallel biological tests to validate the drug effectiveness and side effects. Approaches as quantitative study of activity-structure relationships (QSAR) involve the construction of predictive models that relate a set of descriptors of a chemical compound series and its biological activities with respect to one or more targets in the human body. Datasets used to perform QSAR analyses are generally characterized by a small number of samples and this makes them more complex to build accurate predictive models. In this context, transfer and multi-task learning techniques are very suitable since they take information from other QSAR models to the same biological target, reducing efforts and costs for generating new chemical compounds. Therefore, this review will present the main features of transfer and multi-task learning studies, as well as some applications and its potentiality in drug design projects.

19.
J Biomol Struct Dyn ; 36(16): 4378-4391, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29237358

RESUMEN

Farnesoid X receptor (FXR) is a nuclear receptor related to lipid and glucose homeostasis and is considered an important molecular target to treatment of metabolic diseases as diabetes, dyslipidemia, and liver cancer. Nowadays, there are several FXR agonists reported in the literature and some of it in clinical trials for liver disorders. Herein, a compound series was employed to generate QSAR models to better understand the structural basis for FXR activation by anthranilic acid derivatives (AADs). Furthermore, here we evaluate the inclusion of the standard deviation (SD) of EC50 values in QSAR models quality. Comparison between the use of experimental variance plus average values in model construction with the standard method of model generation that considers only the average values was performed. 2D and 3D QSAR models based on the AAD data set including SD values showed similar molecular interpretation maps and quality (Q2LOO, Q2(F2), and Q2(F3)), when compared to models based only on average values. SD-based models revealed more accurate predictions for the set of test compounds, with lower mean absolute error indices as well as more residuals near zero. Additionally, the visual interpretation of different QSAR approaches agrees with experimental data, highlighting key elements for understanding the biological activity of AADs. The approach using standard deviation values may offer new possibilities for generating more accurate QSAR models based on available experimental data.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/química , ortoaminobenzoatos/química , Humanos , Isoxazoles/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa
20.
J Biomol Struct Dyn ; 36(15): 4010-4022, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29132261

RESUMEN

Activin Receptor-Like Kinase 5 (ALK-5) is related to some types of cancer, such as breast, lung, and pancreas. In this study, we have used molecular docking, molecular dynamics simulations, and free energy calculations in order to explore key interactions between ALK-5 and six bioactive ligands with different ranges of biological activity. The motivation of this work is the lack of crystal structure for inhibitor-protein complexes for this set of ligands. The understanding of the molecular structure and the protein-ligand interaction could give support for the development of new drugs against cancer. The results show that the calculated binding free energy using MM-GBSA, MM-PBSA, and SIE is correlated with experimental data with r2 = 0.88, 0.80, and 0.94, respectively, which indicates that the calculated binding free energy is in excellent agreement with experimental data. In addition, the results demonstrate that H bonds with Lys232, Glu245, Tyr249, His283, Asp351, and one structural water molecule play an important role for the inhibition of ALK-5. Overall, we discussed the main interactions between ALK-5 and six inhibitors that may be used as starting points for designing new molecules to the treatment of cancer.


Asunto(s)
Antineoplásicos/química , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Piridinas/química , Quinazolinas/química , Receptor Tipo I de Factor de Crecimiento Transformador beta/química , Antineoplásicos/síntesis química , Sitios de Unión , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Humanos , Enlace de Hidrógeno , Cinética , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Piridinas/síntesis química , Quinazolinas/síntesis química , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Relación Estructura-Actividad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...