Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(9): 2888-2904, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38528071

RESUMEN

Recent studies have consistently demonstrated that the regulation of chromatin and gene transcription plays a pivotal role in the pathogenesis of neurodevelopmental disorders. Among many genes involved in these pathways, KMT2C, encoding one of the six known histone H3 lysine 4 (H3K4) methyltransferases in humans and rodents, was identified as a gene whose heterozygous loss-of-function variants are causally associated with autism spectrum disorder (ASD) and the Kleefstra syndrome phenotypic spectrum. However, little is known about how KMT2C haploinsufficiency causes neurodevelopmental deficits and how these conditions can be treated. To address this, we developed and analyzed genetically engineered mice with a heterozygous frameshift mutation of Kmt2c (Kmt2c+/fs mice) as a disease model with high etiological validity. In a series of behavioral analyses, the mutant mice exhibit autistic-like behaviors such as impairments in sociality, flexibility, and working memory, demonstrating their face validity as an ASD model. To investigate the molecular basis of the observed abnormalities, we performed a transcriptomic analysis of their bulk adult brains and found that ASD risk genes were specifically enriched in the upregulated differentially expressed genes (DEGs), whereas KMT2C peaks detected by ChIP-seq were significantly co-localized with the downregulated genes, suggesting an important role of putative indirect effects of Kmt2c haploinsufficiency. We further performed single-cell RNA sequencing of newborn mouse brains to obtain cell type-resolved insights at an earlier stage. By integrating findings from ASD exome sequencing, genome-wide association, and postmortem brain studies to characterize DEGs in each cell cluster, we found strong ASD-associated transcriptomic changes in radial glia and immature neurons with no obvious bias toward upregulated or downregulated DEGs. On the other hand, there was no significant gross change in the cellular composition. Lastly, we explored potential therapeutic agents and demonstrate that vafidemstat, a lysine-specific histone demethylase 1 (LSD1) inhibitor that was effective in other models of neuropsychiatric/neurodevelopmental disorders, ameliorates impairments in sociality but not working memory in adult Kmt2c+/fs mice. Intriguingly, the administration of vafidemstat was shown to alter the vast majority of DEGs in the direction to normalize the transcriptomic abnormalities in the mutant mice (94.3 and 82.5% of the significant upregulated and downregulated DEGs, respectively, P < 2.2 × 10-16, binomial test), which could be the molecular mechanism underlying the behavioral rescuing. In summary, our study expands the repertoire of ASD models with high etiological and face validity, elucidates the cell-type resolved molecular alterations due to Kmt2c haploinsufficiency, and demonstrates the efficacy of an LSD1 inhibitor that might be generalizable to multiple categories of psychiatric disorders along with a better understanding of its presumed mechanisms of action.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Modelos Animales de Enfermedad , Haploinsuficiencia , Histona Demetilasas , N-Metiltransferasa de Histona-Lisina , Transcriptoma , Animales , Haploinsuficiencia/genética , Ratones , Trastorno del Espectro Autista/genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Transcriptoma/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Trastorno Autístico/genética , Masculino , Discapacidad Intelectual/genética , Deleción Cromosómica , Anomalías Craneofaciales/genética , Femenino , Ratones Endogámicos C57BL , Conducta Animal , Encéfalo/metabolismo , Cromosomas Humanos Par 9 , Cardiopatías Congénitas
2.
Cell Genom ; 4(2): 100488, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38280381

RESUMEN

Whole-genome sequencing (WGS) studies of autism spectrum disorder (ASD) have demonstrated the roles of rare promoter de novo variants (DNVs). However, most promoter DNVs in ASD are not located immediately upstream of known ASD genes. In this study analyzing WGS data of 5,044 ASD probands, 4,095 unaffected siblings, and their parents, we show that promoter DNVs within topologically associating domains (TADs) containing ASD genes are significantly and specifically associated with ASD. An analysis considering TADs as functional units identified specific TADs enriched for promoter DNVs in ASD and indicated that common variants in these regions also confer ASD heritability. Experimental validation using human induced pluripotent stem cells (iPSCs) showed that likely deleterious promoter DNVs in ASD can influence multiple genes within the same TAD, resulting in overall dysregulation of ASD-associated genes. These results highlight the importance of TADs and gene-regulatory mechanisms in better understanding the genetic architecture of ASD.


Asunto(s)
Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Humanos , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Regulación de la Expresión Génica , Secuenciación Completa del Genoma
3.
iScience ; 20: 359-372, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31614319

RESUMEN

Monoamine neurotransmitters are released by specialized neurons regulating behavioral, motor, and cognitive functions. Although the localization of monoaminergic neurons in the brain is well known, the distribution and kinetics of monoamines remain unclear. Here, we generated a murine brain atlas of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels using mass spectrometry imaging (MSI). We found several nuclei rich in both 5-HT and a catecholamine (DA or NE) and identified the paraventricular nucleus of the thalamus (PVT), where 5-HT and NE are co-localized. The analysis of 5-HT fluctuations in response to acute tryptophan depletion and infusion of isotope-labeled tryptophan in vivo revealed a close kinetic association between the raphe nuclei, PVT, and amygdala but not the other nuclei. Our findings imply the existence of a highly dynamic 5-HT-mediated raphe to PVT pathway that likely plays a role in the brain monoamine system.

4.
Neurochem Int ; 129: 104494, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31233839

RESUMEN

The mesolimbic dopaminergic signaling, such as that originating from the ventral tegmental area (VTA) neurons in the medial part of the nucleus accumbens (mNAc), plays a role in complex sensory and affective components of pain. To date, we have demonstrated that optogenetic sensory nerve stimulation rapidly alters the dopamine (DA) content within the mNAc. However, the physiological role and biochemical processes underlying such rapid and regional dynamics of DA remain unclear. In this study, using imaging mass spectrometry (IMS), we observed that sensitized pain stimulation by optogenetic sensory nerve activation increased DA and 3-Methoxytyramine (3-MT; a post-synaptic metabolite obtained following DA degradation) in the mNAc of the experimental mice. To delineate the mechanism associated with elevation of DA and 3-MT, the de novo synthesized DA in the VTA/substantia nigra terminal areas was evaluated using IMS by visualizing the metabolic conversion of stable isotope-labeled tyrosine (13C15N-Tyr) to DA. Our approach revealed that at steady state, the de novo synthesized DA occupied >10% of the non-labeled DA pool in the NAc within 1.5 h of isotope-labeled Tyr administration, despite no significant increase following pain stimulation. These results suggested that sensitized pain triggered an increase in the release and postsynaptic intake of DA in the mNAc, followed by its degradation, and likely delayed de novo DA synthesis. In conclusion, we demonstrated that short, peripheral nerve excitation with mechanical stimulation accelerates the mNAc-specific DA signaling and metabolism which might be associated with the development of mechanical allodynia.


Asunto(s)
Dopamina/metabolismo , Hiperalgesia/fisiopatología , Núcleo Accumbens/metabolismo , Optogenética/efectos adversos , Nervio Ciático/fisiopatología , Células Receptoras Sensoriales/efectos de la radiación , Área Tegmental Ventral/metabolismo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/análogos & derivados , Genes Reporteros , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/metabolismo , Umbral del Dolor/efectos de la radiación , Nervio Ciático/efectos de la radiación , Células Receptoras Sensoriales/metabolismo , Tacto
5.
Glia ; 66(9): 2013-2023, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29845643

RESUMEN

Functional magnetic resonance imaging (fMRI) based on the blood oxygenation level-dependent (BOLD) signal has been used to infer sites of neuronal activation in the brain. A recent study demonstrated, however, unexpected BOLD signal generation without neuronal excitation, which led us to hypothesize the presence of another cellular source for BOLD signal generation. Collective assessment of optogenetic activation of astrocytes or neurons, fMRI in awake mice, electrophysiological measurements, and histochemical detection of neuronal activation, coherently suggested astrocytes as another cellular source. Unexpectedly, astrocyte-evoked BOLD signal accompanied oxygen consumption without modulation of neuronal activity. Imaging mass spectrometry of brain sections identified synthesis of acetyl-carnitine via oxidative glucose metabolism at the site of astrocyte-, but not neuron-evoked BOLD signal. Our data provide causal evidence that astrocytic activation alone is able to evoke BOLD signal response, which may lead to reconsideration of current interpretation of BOLD signal as a marker of neuronal activation.


Asunto(s)
Astrocitos/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética , Neuronas/fisiología , Oxígeno/sangre , Animales , Encéfalo/irrigación sanguínea , Glucosa/metabolismo , Ratones Transgénicos , Microelectrodos , Optogenética , Consumo de Oxígeno , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Vigilia
6.
Nat Immunol ; 18(12): 1342-1352, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29058703

RESUMEN

T cells reorganize their metabolic profiles after being activated, but the systemic metabolic effect of sustained activation of the immune system has remained unexplored. Here we report that augmented T cell responses in Pdcd1-/- mice, which lack the inhibitory receptor PD-1, induced a metabolic serum signature characterized by depletion of amino acids. We found that the depletion of amino acids in serum was due to the accumulation of amino acids in activated Pdcd1-/- T cells in the lymph nodes. A systemic decrease in tryptophan and tyrosine led to substantial deficiency in the neurotransmitters serotonin and dopamine in the brain, which resulted in behavioral changes dominated by anxiety-like behavior and exacerbated fear responses. Together these data indicate that excessive activation of T cells causes a systemic metabolomic shift with consequences that extend beyond the immune system.


Asunto(s)
Ansiedad/fisiopatología , Conducta Animal/fisiología , Miedo/fisiología , Activación de Linfocitos/inmunología , Receptor de Muerte Celular Programada 1/genética , Linfocitos T/inmunología , Aminoácidos/sangre , Animales , Encéfalo/metabolismo , Dopamina/deficiencia , Interferón gamma/sangre , Quinurenina/sangre , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Muerte Celular Programada 1/deficiencia , Serotonina/deficiencia , Linfocitos T/metabolismo , Triptófano/metabolismo , Tirosina/metabolismo
7.
J Cell Sci ; 130(20): 3568-3577, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28827407

RESUMEN

The small GTPase Arl8b localizes primarily to lysosomes and is involved in lysosomal motility and fusion. Here, we show that Arl8b is required for lysosomal degradation of maternal proteins in the visceral yolk sac endoderm (VYSE), an apical cell layer of the visceral yolk sac, of mouse embryos. The VYSE actively takes up maternal materials from uterine fluid and degrades them in lysosomes to provide breakdown products to the embryo. Arl8b gene-trap mice (Arl8b-/- ) displayed decreased early embryo body size. The Arl8b-/-  VYSE exhibited defective endocytic trafficking to the lysosome and accumulation of maternal proteins such as albumin and immunoglobulin G in late endocytic organelles. Furthermore, Transthyretin-Cre;Arl8bflox/flox mice in which Arl8b was ablated specifically in the VYSE also showed decreased embryo body size, defects in trafficking to the lysosome and reduction of the free amino acid level in the embryos. Taken together, these results suggest that Arl8b mediates lysosomal degradation of maternal proteins in the VYSE, thereby contributing to mouse embryonic development.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Saco Vitelino/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Endodermo , Femenino , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Proteolisis
8.
Development ; 144(1): 63-73, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049690

RESUMEN

Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development.


Asunto(s)
Membrana Corioalantoides/embriología , Membrana Corioalantoides/metabolismo , Metabolismo Energético/genética , Fructosa-Bifosfato Aldolasa/genética , Glucosa/metabolismo , Fosfofructoquinasa-1/genética , Animales , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Fructosa-Bifosfato Aldolasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucólisis/genética , Intercambio Materno-Fetal/genética , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Fosfofructoquinasa-1/metabolismo , Embarazo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología
9.
Sci Rep ; 6: 32361, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581923

RESUMEN

Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered (13)C6-glucose and (13)C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions.


Asunto(s)
Glucosa/metabolismo , Ácido Láctico/metabolismo , Isquemia Miocárdica/metabolismo , Animales , Isótopos de Carbono , Ácido Glutámico/metabolismo , Masculino , Redes y Vías Metabólicas , Metaboloma , Ratones Endogámicos C57BL , Microondas
10.
Nat Commun ; 7: 11635, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27189088

RESUMEN

In severely hypoxic condition, HIF-1α-mediated induction of Pdk1 was found to regulate glucose oxidation by preventing the entry of pyruvate into the tricarboxylic cycle. Monocyte-derived macrophages, however, encounter a gradual decrease in oxygen availability during its migration process in inflammatory areas. Here we show that HIF-1α-PDK1-mediated metabolic changes occur in mild hypoxia, where mitochondrial cytochrome c oxidase activity is unimpaired, suggesting a mode of glycolytic reprogramming. In primary macrophages, PKM2, a glycolytic enzyme responsible for glycolytic ATP synthesis localizes in filopodia and lammelipodia, where ATP is rapidly consumed during actin remodelling processes. Remarkably, inhibition of glycolytic reprogramming with dichloroacetate significantly impairs macrophage migration in vitro and in vivo. Furthermore, inhibition of the macrophage HIF-1α-PDK1 axis suppresses systemic inflammation, suggesting a potential therapeutic approach for regulating inflammatory processes. Our findings thus demonstrate that adaptive responses in glucose metabolism contribute to macrophage migratory activity.


Asunto(s)
Movimiento Celular , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular Tumoral , Ácido Dicloroacético , Complejo IV de Transporte de Electrones/metabolismo , Glucosa/metabolismo , Hipoxia/metabolismo , Ratones Endogámicos C57BL , Cultivo Primario de Células , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
11.
Cell Rep ; 13(1): 122-131, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26411688

RESUMEN

Bioenergetic metabolism varies during cell differentiation, but details of B cell metabolism remain unclear. Here, we show the metabolic changes during B cell differentiation in the intestine, where B cells differentiate into IgA(+) plasma cells (PCs). Naive B cells in the Peyer's patches (PPs) and IgA(+) PCs in the intestinal lamina propria (iLP) both used the tricarboxylic acid (TCA) cycle, but only IgA(+) PCs underwent glycolysis. These metabolic differences reflected their dependencies on vitamin B1, an essential cofactor for the TCA cycle. Indeed, the diminished activity of the TCA cycle after dietary vitamin B1 depletion decreased the number of naive B cells in PPs without affecting IgA(+) PCs in the iLP. The maintenance of naive B cells by dietary vitamin B1 was required to induce-but not maintain-intestinal IgA responses against oral antigens. These findings reveal the diet-mediated maintenance of B cell immunometabolism in organized and diffuse intestinal tissues.


Asunto(s)
Linfocitos B/metabolismo , Inmunidad Mucosa , Mucosa Intestinal/metabolismo , Células Plasmáticas/metabolismo , Tiamina/metabolismo , Deficiencia de Vitamina B/metabolismo , Animales , Anticuerpos/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Diferenciación Celular , Linaje de la Célula/inmunología , Ciclo del Ácido Cítrico/inmunología , Femenino , Glucólisis/inmunología , Inmunidad Humoral , Inmunoglobulina A/biosíntesis , Inmunoglobulina M/biosíntesis , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Activación de Linfocitos , Depleción Linfocítica , Ratones , Ratones Endogámicos BALB C , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Tiamina/inmunología , Deficiencia de Vitamina B/inmunología , Deficiencia de Vitamina B/patología
12.
J Biosci Bioeng ; 120(6): 666-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26188417

RESUMEN

We found that Saccharomyces cerevisiae utilizes thiosulfate as a sole sulfur source. The energetically-favored thiosulfate rather than sulfate as sulfur sources is also more effective for improving growth and ethanol-production rate in S. cerevisiae due to high levels of intracellular NADPH during thiosulfate utilization.


Asunto(s)
Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Tiosulfatos/metabolismo , Etanol/análisis , NADP/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crecimiento & desarrollo
13.
J Cereb Blood Flow Metab ; 35(5): 794-805, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25586144

RESUMEN

Although therapeutic hypothermia is known to improve neurologic outcomes after perinatal cerebral hypoxia-ischemia, etiology remains unknown. To decipher the mechanisms whereby hypothermia regulates metabolic dynamics in different brain regions, we used a two-step approach: a metabolomics to target metabolic pathways responding to cooling, and a quantitative imaging mass spectrometry to reveal spatial alterations in targeted metabolites in the brain. Seven-day postnatal rats underwent the permanent ligation of the left common carotid artery followed by exposure to 8% O2 for 2.5 hours. The pups were returned to normoxic conditions at either 38 °C or 30 °C for 3 hours. The brain metabolic states were rapidly fixed using in situ freezing. The profiling of 107 metabolites showed that hypothermia diminishes the carbon biomass related to acetyl moieties, such as pyruvate and acetyl-CoA; conversely, it increases deacetylated metabolites, such as carnitine and choline. Quantitative imaging mass spectrometry demarcated that hypothermia diminishes the acetylcholine contents specifically in hippocampus and amygdala. Such decreases were associated with an inverse increase in carnitine in the same anatomic regions. These findings imply that hypothermia achieves its neuroprotective effects by mediating the cellular acetylation status through a coordinated suppression of acetyl-CoA, which resides in metabolic junctions of glycolysis, amino-acid catabolism, and ketolysis.


Asunto(s)
Acetilcoenzima A/metabolismo , Acetilcolina/metabolismo , Amígdala del Cerebelo , Carnitina/metabolismo , Hipocampo , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Aminoácidos/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Animales Recién Nacidos , Glucólisis , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/terapia , Masculino , Espectrometría de Masas , Ácido Pirúvico/metabolismo , Ratas , Ratas Sprague-Dawley
14.
Mass Spectrom (Tokyo) ; 4(1): A0040, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26819911

RESUMEN

In vivo concentrations of cellular signaling mediators such as inflammatory mediators are normally maintained at very low levels due to their strong ability to induce a biological response. The production, diffusion, and decomposition of such mediators are spatio-temporally regulated. Therefore, in order to understand biochemical basis of disease progression and develop new therapeutic strategies, it is important to understand the spatiotemporal dynamics of the signaling mediators in vivo, during the progression of disorders, e.g., chronic inflammatory diseases; however, the lack of effective imaging technology has made it difficult to determine their localizations in vivo. Such characterization requires technical breakthroughs, including molecular imaging methods that are sensitive enough to detect low levels of metabolites in the heterogeneous tissue regions in diseased organs. We and other groups have attempted to fill this technical gap by developing highly sensitive imaging mass spectrometry (IMS) technologies. To date, we have established two key techniques toward this goal, including (i) a sample preparation procedure that has eliminated the problem of the postmortem degradation of labile metabolites, and (ii) on-tissue derivatization of metabolites, which can enhance analyte ionization efficiency. Here, we review recent progress in the development of these technologies as well as how the highly sensitive IMS technique has contributed to increasing understanding of the biochemical basis of disease mechanisms, discovery of new diagnostic markers, and development of new therapies.

15.
FEBS J ; 281(20): 4672-90, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25143155

RESUMEN

Non-neuronal acetylcholine (ACh) is predicted to function as a local cell signaling molecule. However, the physiological significance of the synthesis of non-neuronal ACh in the intestine remains unclear. Here, experiments using crypt-villus organoids that lack nerve and immune cells in culture led us to suggest that endogenous ACh is synthesized in the intestinal epithelium to evoke growth and differentiation of the organoids through activation of muscarinic ACh receptors (mAChRs). The extracts of the cultured organoids showed a noticeable capacity for ACh synthesis that was sensitive to a potent inhibitor of choline acetyltransferase. Imaging MS revealed endogenous ACh localized in the epithelial layer in mouse small intestinal epithelium in vivo, suggesting that there are non-neuronal resources of ACh. Treatment of organoids with carbachol downregulated the growth of organoids and the expression of marker genes for epithelial cells. On the other hand, antagonists for mAChRs enhanced the growth and differentiation of organoids, indicating the involvement of mAChRs in regulating the proliferation and differentiation of Lgr5-positive stem cells. Collectively, our data provide evidence that endogenous ACh released from intestinal epithelium maintains homeostasis of intestinal epithelial cell growth and differentiation via mAChRs in mice.


Asunto(s)
Acetilcolina/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Organoides/efectos de los fármacos , Receptores Acoplados a Proteínas G/fisiología , Células Madre/efectos de los fármacos , Animales , Western Blotting , Células Cultivadas , Colina O-Acetiltransferasa/metabolismo , Agonistas Colinérgicos/farmacología , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas para Inmunoenzimas , Integrasas/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Organoides/citología , Organoides/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células Madre/citología , Células Madre/metabolismo
16.
Proteomics ; 14(7-8): 829-38, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23970501

RESUMEN

Biotransformation of glucose in organs includes multiple pathways, while quantitative evaluation of percentages of its utilization for individual pathways and their spatial heterogeneity in vivo remain unknown. Imaging MS (IMS) and metabolomics combined with a focused microwave irradiation for rapidly fixing tissue metabolism allowed us to quantify and visualize metabolic fluxes of glucose-derived metabolites in the mouse brain in vivo. At 15 min after the intraperitoneal injection of (13) C6 -labeled glucose, the mouse brain was exposed to focused microwave irradiation, which can stop brain metabolism within 1 s. Quantification of metabolic intermediates containing (13) C atoms revealed that a majority of the (13) C6 -glucose was diverted into syntheses of glutamate, lactate, and uridine diphosphate (UDP)-glucose. IMS showed that regions rich in glutaminergic neurons exhibited a large signal of (13) C2 -labeled glutamate. On the other hand, the midbrain region was enriched with an intensive (13) C6 -labeled UDP-glucose signal, suggesting an active glycogen synthesis. Collectively, application of the current method makes it possible to examine the fluxes of glucose metabolism in a region-specific manner.


Asunto(s)
Glucosa/metabolismo , Espectroscopía de Resonancia Magnética , Metabolómica , Neuronas/metabolismo , Animales , Radioisótopos de Carbono/química , Irradiación Craneana , Ácido Glutámico/metabolismo , Glucógeno/biosíntesis , Mesencéfalo/metabolismo , Mesencéfalo/efectos de la radiación , Ratones , Microondas , Neuronas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...