Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8046, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580748

RESUMEN

Osteoarthritis is a common chronic disease and major cause of disability and chronic pain in ageing populations. In this pathology, the entire joint is involved, and the regeneration of articular cartilage still remains one of the main challenges. Here, we investigated the molecular mechanisms underlying cartilage regeneration in young mice using a full-thickness cartilage injury (FTCI) model. FTCI-induced cartilage defects were created in the femoral trochlea of young and adult C57BL/6 mice. To identify key molecules and pathways involved in the early response to cartilage injury, we performed RNA sequencing (RNA-seq) analysis of cartilage RNA at 3 days after injury. Young mice showed superior cartilage regeneration compared to adult mice after cartilage injury. RNA-seq analysis revealed significant upregulation of genes associated with the immune response, particularly in the IFN-γ signaling pathway and qRT-PCR analysis showed macrophage polarization in the early phase of cartilage regeneration (3 days) in young mice after injury, which might promote the removal of damaged or necrotic cells and initiate cartilage regeneration in response to injury. IFN-γR1- and IFN-γ-deficient mice exhibited impaired cartilage regeneration following cartilage injury. DMM-induced and spontaneous OA phenotypes were exacerbated in IFN-γR1-/- mice than in wild-type mice. Our data support the hypothesis that IFN-γ signaling is necessary for cartilage regeneration, as well as for the amelioration of post-traumatic and age-induced OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Ratones , Cartílago Articular/patología , Modelos Animales de Enfermedad , Interferón gamma/genética , Ratones Endogámicos C57BL , Osteoartritis/metabolismo , Regeneración , Transducción de Señal
2.
Exp Mol Med ; 56(4): 890-903, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38556552

RESUMEN

Acute phase proteins involved in chronic inflammatory diseases have not been systematically analyzed. Here, global proteome profiling of serum and urine revealed that orosomucoid-2 (ORM2), an acute phase reactant, was differentially expressed in rheumatoid arthritis (RA) patients and showed the highest fold change. Therefore, we questioned the extent to which ORM2, which is produced mainly in the liver, actively participates in rheumatoid inflammation. Surprisingly, ORM2 expression was upregulated in the synovial fluids and synovial membranes of RA patients. The major cell types producing ORM2 were synovial macrophages and fibroblast-like synoviocytes (FLSs) from RA patients. Recombinant ORM2 robustly increased IL-6, TNF-α, CXCL8 (IL-8), and CCL2 production by RA macrophages and FLSs via the NF-κB and p38 MAPK pathways. Interestingly, glycophorin C, a membrane protein for determining erythrocyte shape, was the receptor for ORM2. Intra-articular injection of ORM2 increased the severity of arthritis in mice and accelerated the infiltration of macrophages into the affected joints. Moreover, circulating ORM2 levels correlated with RA activity and radiographic progression. In conclusion, the acute phase protein ORM2 can directly increase the production of proinflammatory mediators and promote chronic arthritis in mice, suggesting that ORM2 could be a new therapeutic target for RA.


Asunto(s)
Artritis Reumatoide , Macrófagos , Orosomucoide , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Humanos , Animales , Orosomucoide/metabolismo , Ratones , Macrófagos/metabolismo , Masculino , Femenino , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Proteínas de Fase Aguda/metabolismo , Sinoviocitos/metabolismo , Sinoviocitos/patología , Citocinas/metabolismo , Persona de Mediana Edad , Líquido Sinovial/metabolismo , Inflamación/metabolismo , Inflamación/patología , Biomarcadores , Mediadores de Inflamación/metabolismo , Modelos Animales de Enfermedad
3.
J Immunother Cancer ; 12(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485289

RESUMEN

BACKGROUND: While Programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) blockade is a potent antitumor treatment strategy, it is effective in only limited subsets of patients with cancer, emphasizing the need for the identification of additional immune checkpoints. Butyrophilin 1A1 (BTN1A1) has been reported to exhibit potential immunoregulatory activity, but its ability to function as an immune checkpoint remains to be systematically assessed, and the mechanisms underlying such activity have yet to be characterized. METHODS: BTN1A1 expression was evaluated in primary tumor tissue samples, and its ability to suppress T-cell activation and T cell-dependent tumor clearance was examined. The relationship between BTN1A1 and PD-L1 expression was further characterized, followed by the development of a BTN1A1-specific antibody that was administered to tumor-bearing mice to test the amenability of this target to immune checkpoint inhibition. RESULTS: BTN1A1 was confirmed to suppress T-cell activation in vitro and in vivo. Robust BTN1A1 expression was detected in a range of solid tumor tissue samples, and BTN1A1 expression was mutually exclusive with that of PD-L1 as a consequence of its inhibition of Janus-activated kinase/signal transducer and activator of transcription signaling-induced PD-L1 upregulation. Antibody-mediated BTN1A1 blockade suppressed tumor growth and enhanced immune cell infiltration in syngeneic tumor-bearing mice. CONCLUSION: Together, these results confirm that the potential of BTN1A1 is a bona fide immune checkpoint and a viable immunotherapeutic target for the treatment of individuals with anti-PD-1/PD-L1 refractory or resistant disease, opening new avenues to improving survival outcomes for patients with a range of cancers.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Animales , Humanos , Ratones , Butirofilinas , Activación de Linfocitos , Neoplasias/tratamiento farmacológico , Linfocitos T , Regulación hacia Arriba
4.
Cell Mol Immunol ; 21(3): 227-244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38195836

RESUMEN

Transcriptional coactivators regulate the rate of gene expression in the nucleus. Nuclear receptor coactivator 6 (NCOA6), a coactivator, has been implicated in embryonic development, metabolism, and cancer pathogenesis, but its role in innate immunity and inflammatory diseases remains unclear. Here, we demonstrated that NCOA6 was expressed in monocytes and macrophages and that its level was increased under proinflammatory conditions. Unexpectedly, nuclear NCOA6 was found to translocate to the cytoplasm in activated monocytes and then become incorporated into the inflammasome with NLRP3 and ASC, forming cytoplasmic specks. Mechanistically, NCOA6 associated with the ATP hydrolysis motifs in the NACHT domain of NLRP3, promoting the oligomerization of NLRP3 and ASC and thereby instigating the production of IL-1ß and active caspase-1. Of note, Ncoa6 deficiency markedly inhibited NLRP3 hyperactivation caused by the Nlrp3R258W gain-of-function mutation in macrophages. Genetic ablation of Ncoa6 substantially attenuated the severity of two NLRP3-dependent diseases, folic-induced acute tubular necrosis and crystal-induced arthritis, in mice. Consistent with these findings, NCOA6 was highly expressed in macrophages derived from gout patients, and NCOA6-positive macrophages were significantly enriched in gout macrophages according to the transcriptome profiling results. Conclusively, NCOA6 is a critical regulator of NLRP3 inflammasome activation and is therefore a promising target for NLRP3-dependent diseases, including gout.


Asunto(s)
Artritis Gotosa , Gota , Animales , Humanos , Ratones , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/metabolismo
5.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862515

RESUMEN

The boron neutron capture therapy (BNCT) system developed by the Korea Institute of Radiological and Medical Sciences is a compact neutron source that can be installed at medical institutes. The target energy was accelerated to a maximum of 2.4 MeV-20 mA by introducing a gas stripping device that converts negative hydrogen ions into positive ions. By using the tandem-type accelerator in this way, a high-voltage DC power supply was designed with 1.2 MV-45 mA as the maximum capability. The design was improved to reduce the number of stages of a Cockcroft-Walton voltage multiplier. Hence, the ripple risk of the DC flat top resulting from unwanted stray capacitance was lowered. The overall height and volume of the Cockcroft-Walton voltage multiplier were reduced to less than half those of the existing design method, making miniaturization possible. After such advanced design and manufacturing, performance tests were performed at 750 kV-45 mA under 23 stages of the Cockcroft-Walton voltage multiplier, which is the highest level that can perform at its maximum under in-air conditions. It demonstrated stable performance under in-air conditions without breakdown for 2 h, even at 620 kV-35 mA. To reach the final target of 1.2 MV-45 mA, the groundwork is laid for achieving experimental performance while satisfying the optimal requirements in SF6 gas.

6.
Nat Cell Biol ; 25(10): 1478-1494, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37749225

RESUMEN

All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.


Asunto(s)
Histonas , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Leucina/metabolismo , Histonas/genética , Histonas/metabolismo , Hierro/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Desmetilación
7.
Immunology ; 168(3): 493-510, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36183156

RESUMEN

Not only are many Mycobacteria pathogens, but they can act as strong non-specific immunopotentiators, generating beneficial effects on the pathogenesis of some diseases. However, there has been no direct evidence of the effect of mycobacterial species on colorectal cancer (CRC). Herein, we showed that there may be a meaningful inverse correlation between the incidence of tuberculosis and CRC based on global statistics and that heat-killed Mycobacterial tuberculosis and live Mycobacterium bovis (Bacillus Calmette-Guérin strain) could ameliorate CRC development. In particular, using a faecal microbiota transplantation and a comparison between separate housing and cohousing, we demonstrated that the gut microbiota is involved in the protective effects. The microbial alterations can be elucidated by the modulation of antimicrobial activities including those of the Reg3 family genes. Furthermore, interleukin-22 production by T helper cells contributed to the anti-inflammatory activity of Mycobacteria. Our results revealed a novel role of Mycobacteria involving gut microbial alterations in dampening inflammation-associated CRC and an immunological mechanism underlying the interaction between microbes and host immunity.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humanos , Vacuna BCG
8.
Rev Sci Instrum ; 93(2): 024703, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232149

RESUMEN

To build a proton beam accelerator that can be applied to a boron neutron capture therapy system based on an electrostatic accelerator, a high-voltage direct-current (DC) power supply system equivalent to the generation of neutrons should be provided. The symmetrical Cockcroft-Walton voltage multiplier method is suitable for stable acceleration of the proton beam in the tandem electrostatic accelerator in this system. Before the second step-up with the Cockcroft-Walton circuit, the design of the inverter is prioritized by preponderantly considering the first voltage and resonance frequency. Moreover, the optimized stacking number is determined with consideration of the ripple voltage, voltage drop, average output voltage, and fundamental harmonics, and a design is performed to set related parameter values to be stable in the flat-top region of the voltage. A high-voltage DC power supply system of 1.2 MV/45 mA is needed for a stable terminal energy of 2.4 MeV/20 mA. Such a design can be optimized by securing reliable data using a simulation tool on the basis of theoretical calculations. This will become a formidable touchstone in manufacturing technology based on acquiring practical know-how for setting up a tandem electrostatic accelerator-based boron neutron capture therapy system in the future.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Simulación por Computador , Suministros de Energía Eléctrica , Neutrones , Aceleradores de Partículas , Electricidad Estática
9.
Rev Sci Instrum ; 91(11): 113306, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261443

RESUMEN

Versatile high-power pulsed electron-beam accelerators that meet the requirements of pulsed high-power specifications are needed for appropriate applications in medical industry, defense, and other industries. The pulsed electron beam accelerator comprising a Marx generator and Blumlein pulse forming line (PFL) is designed to accelerate the electron beams at the level of 1 MeV when electrostatically discharging. The performance specifications of Marx generators consisting of a 100 kV DC power supply, R-L-C circuit, and high voltage switch are at a maximum 800 kV. At this time, by using the capacitance mismatching principle between the Marx generator and the Blumlein PFL under the law of preserving the amount of charge, it is possible to generate a high voltage in the form of a square pulse up to about 1.1 MV, as much as 1.37 times the charged voltage of the Marx generator. As a result, energy transmission from the Marx generator with a high efficiency of about 85% to the Blumlein PFL is possible. The aim of this study is that the pulsed high-power electron-beam accelerator can be used to change the diode impedance, and the energy of the accelerated electron beam reaches a level of 1 MeV with the square pulse width of about 100 ns at the flat-top in the range of relativistic electron beam generation. Performance tests were securely carried out by installing a dummy load based on CuSO4 solution varying the diode impedance to deter damage to the circuit by preventing reflected waves from being generated in the load.

10.
J Immunother Cancer ; 8(2)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33020243

RESUMEN

BACKGROUND: Clinical efficacy of T cell-based cancer immunotherapy is limited by the lack of T cell infiltration in the tumor mass, especially in solid tumors. Our group demonstrated previously that leukocyte-specific protein 1 (LSP1), an intracellular signal regulator, negatively regulates T cell infiltration in inflamed tissues. METHODS: To determine the immuno-regulatory effects of LSP1 in T cells on tumor progression, we investigated the growth of B16 melanoma in Lsp1 knockout (KO) mice and T cell-specific Lsp1 transgenic (Tg) mice. The immune cell subpopulation infiltrated into the tumor mass as well as the expression of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in T cells was assessed by flow cytometry and/or immunohistochemistry. Chemotactic migration was assayed with Lsp1 KO and Lsp1 Tg T cells. Adoptive transfer of Lsp1 KO or Lsp1 Tg T cells was performed in B16 melanoma-challenged Rag1 KO mice. RESULTS: Lsp1 KO mice showed decreased growth of B16 melanoma and increased infiltration of T cells in the tumor mass, which were completely reversed in T cell-specific Lsp1 Tg mice. Lsp1 KO CD8+ T cells also exhibited elevated migratory capacity in response to CXCL9 and CXCL10, whereas Lsp1 Tg CD8+ T cells did the opposite. LSP1 expression was increased in tumor-infiltrating T cells and could be induced by T cell receptor activation. Intriguingly, gene expression profiling of Lsp1 KO T cells suggested enhanced cytotoxicity. Indeed, expression of IFN-γ and TNF-α was increased in tumor-infiltrating CD4+ and CD8+ T cells of Lsp1 KO mice, while it was markedly reduced in those of Lsp1 Tg mice. Adoptive transfer of Lsp1 KO T cells to Rag1 KO mice was more effective in suppressing melanoma growth than transfer of Lsp1 Tg T cells. Of note, when treated with antiprogrammed cell death protein 1 (PD-1) antibody, inhibition of melanoma growth was more pronounced in Lsp1 KO mice than in Lsp1-sufficient mice, suggesting that Lsp1 depletion additively increases the antitumor effects of anti-PD-1 antibody. CONCLUSIONS: LSP1 in T cells regulates the growth of B16 melanoma in mice, possibly by affecting migration and infiltration of T cells into the tumor and by modulating production of antitumor effector cytokines by CD8+ T cells. These findings provide evidence that LSP1 can be a target to improve the efficacy of T cell-based immunotherapy.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Linfocitos T/metabolismo , Animales , Proliferación Celular , Humanos , Ratones , Microambiente Tumoral
11.
Appl Radiat Isot ; 165: 109322, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32739794

RESUMEN

This experimental visualization study was conducted to investigate and define the phenomena of an initially pressurized liquid water target that can prevent the boiling of water when the target is irradiated with a 30-MeV proton beam produced using the MC-50 Cyclotron at Korea Institute of Radiological and Medical Sciences. At various initial pressures and proton beam currents, the behavior of the target water was investigated using a complementary metal-oxide-semiconductor camera. We confirmed that an appropriate initial pressure could indeed prevent local bulk boiling, and be determined by solving Rayleigh's equation and the Clausius-Clapeyron equation for homogeneous bubble growth using the measured bubble size generated at the Bragg-peak region. The saturation temperature of the initial pressure must be higher than the calculated local water temperature at the Bragg-peak region. The final pressure of the water target increased proportionally with the initial pressure and proton beam current. The penetration depth of the beam varied with beam current and slightly with the final pressure, as evidenced by the emission of blue light in all experimental cases.

12.
Nat Immunol ; 20(10): 1348-1359, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31406382

RESUMEN

Helper T cells actively communicate with adjacent cells by secreting soluble mediators, yet crosstalk between helper T cells and endothelial cells remains poorly understood. Here we found that placental growth factor (PlGF), a homolog of the vascular endothelial growth factor that enhances an angiogenic switch in disease, was selectively secreted by the TH17 subset of helper T cells and promoted angiogenesis. Interestingly, the 'angio-lymphokine' PlGF, in turn, specifically induced the differentiation of pathogenic TH17 cells by activating the transcription factor STAT3 via binding to its receptors and replaced the activity of interleukin-6 in the production of interleukin-17, whereas it suppressed the generation of regulatory T cells. Moreover, T cell-derived PlGF was required for the progression of autoimmune diseases associated with TH17 differentiation, including experimental autoimmune encephalomyelitis and collagen-induced arthritis, in mice. Collectively, our findings provide insights into the PlGF-dictated links among angiogenesis, TH17 cell development and autoimmunity.


Asunto(s)
Artritis Experimental/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Factor de Crecimiento Placentario/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Autoinmunidad , Diferenciación Celular , Células Cultivadas , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Neovascularización Patológica , Factor de Crecimiento Placentario/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
13.
J Am Chem Soc ; 141(25): 9753-9757, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31177775

RESUMEN

Synthetic high-density lipoprotein (HDL) mimics have emerged as promising therapeutic agents. However, approaches to date have been unable to reproduce key features of spherical HDLs, which are the most abundant human HDL species. Here, we report the synthesis and characterization of spherical HDL mimics using lipid-conjugated organic core scaffolds. The core design motif constrains and orients phospholipid geometry to facilitate the assembly of soft-core nanoparticles that are approximately 10 nm in diameter and resemble human HDLs in their size, shape, surface chemistry, composition, and protein secondary structure. These particles execute salient HDL functions, including efflux of cholesterol from macrophages, cholesterol delivery to hepatocytes, support lecithin:cholesterol acyltransferase activity, and suppress inflammation. These results represent a significant step toward a genuine functional mimic of human HDLs.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Materiales Biomiméticos/química , Portadores de Fármacos/química , Nanopartículas del Metal/química , Fosfatidiletanolaminas/química , Materiales Biomiméticos/síntesis química , Colesterol/metabolismo , ADN/química , Portadores de Fármacos/síntesis química , Oro/química , Células Hep G2 , Humanos , Inflamación/tratamiento farmacológico , Lipoproteínas HDL/química , Liposomas/química , Monocitos/metabolismo , Subunidad p50 de NF-kappa B/metabolismo
14.
J Clin Lab Anal ; 33(5): e22871, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30958616

RESUMEN

BACKGROUND: This study aimed to preliminarily assess the relationship between erythropoietin-producing hepatocellular carcinoma receptor A3 (EphA3) and androgen receptor (AR) protein expression levels and prognosis in prostate cancer (PCa) to better understand the role of EphA3 in the prognosis and progression of PCa. MATERIALS: We investigated the expression of EphA3 and AR in human PCa by immunohistochemistry. RESULTS: EphA3 and AR were both significantly upregulated in PCa, with expression mainly localized to the nucleus. A high level of AR expression was found in 48.4% of 64 tumor samples, which was significantly more than in the adjacent tissue samples (15.6%) (P < 0.01). The percentage of samples expressing a high level of EphA3 was significantly greater in the PCa samples (54.7%) than in the adjacent tissue samples (20.3%) for the 64 tumors (P < 0.01). The high levels of EphA3 and AR expression in the PCa tissue samples were both correlated with the pathological stage, bladder and rectal invasion, distant metastasis, and preoperative PSA level (both P < 0.05). The survival time was significantly shorter in high levels of AR expression of patients. (P < 0.01). A high level of EphA3 in PCa patients suggests a poor prognosis (P < 0.05). Biochemical recurrence, distant metastasis, and the final scores of EphA3 and AR expression were significantly correlated with the prognosis of PCa (P < 0.05). CONCLUSIONS: Increased EphA3 expression is an independent prognostic factor for a poor outcome and decreased survival in PCa.


Asunto(s)
Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/cirugía , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Androgénicos/metabolismo , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Prostatectomía , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptor EphA3 , Estudios Retrospectivos
15.
J Phys Chem Lett ; 9(5): 1133-1139, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29388774

RESUMEN

Highly stable and stimuli/pH-responsive ultrasmall polymer-grafted nanobins (usPGNs) have been developed by grafting a small amount (10 mol %) of short (4.3 kDa) cholesterol-terminated poly(acrylic acid) (Chol-PAA) into an ultrasmall unilamellar vesicle (uSUV). The usPGNs are stable against fusion and aggregation over several weeks, exhibiting over 10-fold enhanced cargo retention in biologically relevant media at pH 7.4 in comparison with the parent uSUV template. Coarse-grained molecular dynamics (CGMD) simulations confirm that the presence of the cholesterol moiety can greatly stabilize the lipid bilayer. They also show extended PAA chain conformations that can be interpreted as causing repulsion between colloidal particles, thus stabilizing them against fusion. Notably, CGMD predicted a clustering of the Chol-PAA chains on the lipid bilayer under acidic conditions due to intra- and interchain hydrogen bonding, leading to the destabilization of local membrane areas. This explains the experimental observation that usPGNs can be triggered to release a significant amount of cargo upon acidification to pH 5. These developments put the lipid-bilayer-embedded Chol-PAA in stark contrast with traditional poly(acrylic acid) systems where the molar mass (Mn) of the polymer chains must exceed 16.5 kDa to achieve stimuli-responsive changes in conformation. They also distinguish the small usPGNs from the much-larger polymer-caged nanobin platform where the Chol-PAA chains must be covalently cross-linked to engender stimuli-responsive behaviors.

16.
Exp Mol Med ; 49(8): e363, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28775366

RESUMEN

Fibroblast-like synoviocytes (FLSs) constitute a major cell subset of rheumatoid arthritis (RA) synovia. Dysregulation of microRNAs (miRNAs) has been implicated in activation and proliferation of RA-FLSs. However, the functional association of various miRNAs with their targets that are characteristic of the RA-FLS phenotype has not been globally elucidated. In this study, we performed microarray analyses of miRNAs and mRNAs in RA-FLSs and osteoarthritis FLSs (OA-FLSs), simultaneously, to validate how dysregulated miRNAs may be associated with the RA-FLS phenotype. Global miRNA profiling revealed that miR-143 and miR-145 were differentially upregulated in RA-FLSs compared to OA-FLSs. miR-143 and miR-145 were highly expressed in independent RA-FLSs. The miRNA-target prediction and network model of the predicted targets identified insulin-like growth factor binding protein 5 (IGFBP5) and semaphorin 3A (SEMA3A) as potential target genes downregulated by miR-143 and miR-145, respectively. IGFBP5 level was inversely correlated with miR-143 expression, and its deficiency rendered RA-FLSs more sensitive to TNFα stimulation, promoting IL-6 production and NF-κB activity. Moreover, SEMA3A was a direct target of miR-145, as determined by a luciferase reporter assay, antagonizing VEGF165-induced increases in the survival, migration and invasion of RA-FLSs. Taken together, our data suggest that enhanced expression of miR-143 and miR-145 renders RA-FLSs susceptible to TNFα and VEGF165 stimuli by downregulating IGFBP5 and SEMA3A, respectively, and that these miRNAs could be therapeutic targets.


Asunto(s)
Artritis Reumatoide/metabolismo , Proteínas Portadoras/metabolismo , MicroARNs/metabolismo , Semaforina-3A/metabolismo , Sinoviocitos/metabolismo , Biomarcadores/metabolismo , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Humanos , MicroARNs/genética , Osteoartritis/metabolismo , Membrana Sinovial/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
17.
Nanoscale ; 9(34): 12652-12663, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28825749

RESUMEN

The nanoassembly behavior of trivalent small molecule-DNA hybrids (SMDH3s) was investigated as a function of core geometry and supramolecular flexibility through a synergistic experimental-modeling study. While complementary SMDH3s possessing a highly flexible tetrahedral trivalent core primarily assemble into nanoscale caged dimers, the nanoassemblies of SMDH3 comonomers with rigid pyramidal and trigonal cores yield fewer caged dimers and more large-oligomer networks. Specifically, the rigid pyramidal SMDH3 comonomers tend to form smaller nanosized aggregates (dimers, tetramers, and hexamers) upon assembly, attributable to the small (<109°) branch-core-branch angle of the pyramidal core. In contrast, the more-rigid trigonal planar SMDH3 comonomers have a larger (∼120°) branch-core-branch angle, which spaces their DNA arms farther apart, facilitating the formation of larger nanoassemblies (≥nonamers). The population distributions of these nanoassemblies were successfully captured by coarse-grained molecular dynamics (CGMD) simulations over a broad range of DNA concentrations. CGMD simulations can also forecast the effect of incorporating Tn spacer units between the hydridizing DNA arms and the rigid organic cores to increase the overall flexibility of the SMDH3 comonomers. Such "decoupling" of the DNA arms from the organic core was found to result in preferential formation of nanoscale dimers up to an optimal spacer length, beyond which network formation takes over due to entropic factors. This excellent agreement between the simulation and experimental results confirms the versatility of the CGMD model as a useful and reliable tool for elucidating the nanoassembly of SMDH-based building blocks.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Nanoestructuras , Polímeros
18.
Appl Radiat Isot ; 125: 180-184, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28458169

RESUMEN

A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 µA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation.

19.
J Am Chem Soc ; 137(41): 13381-8, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26398097

RESUMEN

Two complementary small-molecule-DNA hybrid (SMDH) building blocks have been combined to form well-defined supramolecular cage dimers at DNA concentrations as high as 102 µM. This was made possible by combining a flexible small-molecule core and three DNA arms of moderate lengths (<20 base pairs). These results were successfully modeled by coarse-grained molecular dynamics simulations, which also revealed that the formation of ill-defined networks in the case of longer DNA arms can be significantly biased by the presence of deep kinetic traps. Notably, melting point studies revealed that cooperative melting behavior can be used as a means to distinguish the relative propensities for dimer versus network formation from complementary flexible three-DNA-arm SMDH (fSMDH3) components: sharp, enhanced melting transitions were observed for assemblies that result mostly in cage dimers, while no cooperative melting behavior was observed for assemblies that form ill-defined networks.


Asunto(s)
ADN/química , Dimerización , Simulación de Dinámica Molecular , Electroforesis en Gel de Poliacrilamida Nativa
20.
J Am Chem Soc ; 137(25): 8184-91, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25980315

RESUMEN

Complementary tetrahedral small molecule-DNA hybrid (SMDH) building blocks have been combined to form nucleic acid-based polymeric nanoparticles without the need for an underlying template or scaffold. The sizes of these particles can be tailored in a facile fashion by adjusting assembly conditions such as SMDH concentration, assembly time, and NaCl concentration. Notably, these novel particles can be stabilized and transformed into functionalized spherical nucleic acid (SNA) structures through the incorporation of capping DNA strands conjugated with functional groups. These results demonstrate a systematic, efficient strategy for the construction and surface functionalization of well-defined, size-tunable nucleic acid particles from readily accessible molecular building blocks. Furthermore, because these nucleic acid-based polymeric nanoparticles exhibited enhanced cellular internalization and resistance to DNase I compared to free synthetic nucleic acids, they should have a plethora of applications in diagnostics and therapeutics.


Asunto(s)
ADN/química , Nanopartículas/química , Secuencia de Bases , Línea Celular , Permeabilidad de la Membrana Celular , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Humanos , Modelos Moleculares , Nanopartículas/metabolismo , Nanopartículas/ultraestructura , Nanotecnología , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...