Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552307

RESUMEN

MOTIVATION: Cell-type clustering is a crucial first step for single-cell RNA-seq data analysis. However, existing clustering methods often provide different results on cluster assignments with respect to their own data pre-processing, choice of distance metrics, and strategies of feature extraction, thereby limiting their practical applications. RESULTS: We propose Cross-Tabulation Ensemble Clustering (CTEC) method that formulates two re-clustering strategies (distribution- and outlier-based) via cross-tabulation. Benchmarking experiments on five scRNA-Seq datasets illustrate that the proposed CTEC method offers significant improvements over the individual clustering methods. Moreover, CTEC-DB outperforms the state-of-the-art ensemble methods for single-cell data clustering, with 45.4% and 17.1% improvement over the single-cell aggregated from ensemble clustering method (SAFE) and the single-cell aggregated clustering via Mixture model ensemble method (SAME), respectively, on the two-method ensemble test. AVAILABILITY AND IMPLEMENTATION: The source code of the benchmark in this work is available at the GitHub repository https://github.com/LWCHN/CTEC.git.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , Análisis de Datos , Perfilación de la Expresión Génica/métodos
2.
Med Image Anal ; 92: 103047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157647

RESUMEN

Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Núcleo Celular/patología , Técnicas Histológicas/métodos
3.
Genome Biol ; 24(1): 79, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072822

RESUMEN

A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research.


Asunto(s)
Algoritmos , Epigenómica , Genómica/métodos
4.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38233091

RESUMEN

Structural variations (SVs) are commonly found in cancer genomes. They can cause gene amplification, deletion and fusion, among other functional consequences. With an average read length of hundreds of kilobases, nano-channel-based optical DNA mapping is powerful in detecting large SVs. However, existing SV calling methods are not tailored for cancer samples, which have special properties such as mixed cell types and sub-clones. Here we propose the Cancer Optical Mapping for detecting Structural Variations (COMSV) method that is specifically designed for cancer samples. It shows high sensitivity and specificity in benchmark comparisons. Applying to cancer cell lines and patient samples, COMSV identifies hundreds of novel SVs per sample.


Asunto(s)
Genoma Humano , Neoplasias , Humanos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética
5.
Chem Asian J ; 11(14): 2011-5, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27246179

RESUMEN

Molecular conformation and the assembly structure determine the spatial arrangements of the constituent units and the functions of a molecule. Although, fullerene hexa-adducts (FHAs) have been known as functional materials with great versatility, their conformational preferences and phase stability remain a complicate issue. By choosing bithiophene (T2 ) and dodecyl bithiophene (C12 T2 ) as the peripheral units of FHA, and using microscopic, scattering and diffraction characterizations, our study reveals how the intramolecular interaction and environmental stimulus affects the conformational preferences and phase stability of FHAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...