Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Energy Environ Sci ; 17(12): 4137-4146, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38899028

RESUMEN

Controlling solid electrolyte interphase (SEI) in batteries is crucial for their efficient cycling. Herein, we demonstrate an approach to enable robust battery performance that does not rely on high fractions of fluorinated species in electrolytes, thus substantially decreasing the environmental footprint and cost of high-energy batteries. In this approach, we use very low fractions of readily reducible fluorinated cations in electrolyte (∼0.1 wt%) and employ electrostatic attraction to generate a substantial population of these cations at the anode surface. As a result, we can form a robust fluorine-rich SEI that allows for dendrite-free deposition of dense Li and stable cycling of Li-metal full cells with high-voltage cathodes. Our approach represents a general strategy for delivering desired chemical species to battery anodes through electrostatic attraction while using minute amounts of additive.

2.
J Am Chem Soc ; 143(32): 12552-12559, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34357752

RESUMEN

Despite the continuous progress in the research and development of Ti3C2Tx (MXene) electrodes for high-power batteries and supercapacitor applications, the role of the anions in the electrochemical energy storage and their ability to intercalate between the MXene sheets upon application of positive voltage have not been clarified. A decade after the discovery of MXenes, the information about the possibility of anion insertion into the restacked MXene electrode is still being questioned. Since the positive potential stability range in diluted aqueous electrolytes is severely limited by anodic oxidation of the Ti, the possibility of anion insertion was evaluated in concentrated aqueous electrolyte solutions and aprotic electrolytes as well. To address this issue, we have conducted in situ gravimetric electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) measurements in highly concentrated LiCl and LiBr electrolytes, which enable a significant extension of the operation range of the MXene electrodes toward positive potentials. Also, halogens are among the smallest anions and should be easier to intercalate between MXene layers, in comparison to multiatomic anions. On the basis of mass change variations in the positive voltage range and complementary density functional theory calculations, it was demonstrated that insertion of anionic species into MXene, within the range of potentials of interest for capacitive energy storage, is not likely to occur. This can be explained by the strong negative charge on Ti3C2Tx sheets terminated by functional groups.

3.
ACS Appl Mater Interfaces ; 10(5): 4652-4661, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29309114

RESUMEN

A two-dimensional electrode architecture of ∼25 nm sized Co nanoparticles chemically bonded to ∼100 nm thick amorphous porous carbon nanosheets (Co@PCNS) through interfacial Co-C bonds is reported for the first time. This unique 2D hybrid architecture incorporating multiple Li-ion storage mechanisms exhibited outstanding specific capacity, rate performance, and cycling stabilities compared to nanostructured Co3O4 electrodes and Co-based composites reported earlier. A high discharge capacity of 900 mAh/g is achieved at a charge-discharge rate of 0.1C (50 mA/g). Even at high rates of 8C (4 A/g) and 16C (8 A/g), Co@PCNS demonstrated specific capacities of 620 and 510 mAh/g, respectively. Integrity of interfacial Co-C bonds, Co nanoparticles, and 90% of the initial capacity are preserved after 1000 charge-discharge cycles. Implementation of Co nanoparticles instead of Co3O4 restricted Li2O formation during the charge-discharge process. In situ formed Co-C bonds during the pyrolysis steps improve interfacial charge transfer, and eliminate particle agglomeration, identified as the key factors responsible for the exceptional electrochemical performance of Co@PCNS. Moreover, the nanoporous microstructure and 2D morphology of carbon nanosheets facilitate superior contact with the electrolyte solution and improved strain relaxation. This study summarizes design principles for fabricating high-performance transition-metal-based Li-ion battery hybrid anodes.

4.
ACS Appl Mater Interfaces ; 9(22): 18790-18798, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28537377

RESUMEN

Fluorocarbon (CxFy) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g-1 and 269 mAh g-1 in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g-1) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.

5.
Environ Sci Technol ; 49(18): 11191-8, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26098219

RESUMEN

Porous carbon microsheet anodes with Li-ion storage capacity exceeding the theoretical limit are for the first time derived from waste packing-peanuts. Crystallinity, surface area, and porosity of these 1 µm thick carbon sheets were tuned by varying the processing temperature. Anodes composed of the carbon sheets outperformed the electrochemical properties of commercial graphitic anode in Li-ion batteries. At a current density of 0.1 C, carbon microsheet anodes exhibited a specific capacity of 420 mAh/g, which is slightly higher than the theoretical capacity of graphite (372 mAh/g) in Li-ion half-cell configurations. At a higher rate of 1 C, carbon sheets retained 4-fold higher specific capacity (220 mAh/g) compared to those of commercial graphitic anode. After 100 charge-discharge cycles at current densities of 0.1 and 0.2 C, optimized carbon sheet anodes retained stable specific capacities of 460 and 370 mAh/g, respectively. Spectroscopic and microscopic investigations proved the structural integrity of these high-performance carbon anodes during numerous charge-discharge cycles. Considerably higher electrochemical performance of the porous carbon microsheets are endorsed to their disorderness that facilitate to store more Li-ions than the theoretical limit, and porous 2-D microstructure enabling fast solid-state Li-ion diffusion and superior interfacial kinetics. The work demonstrated here illustrates an inexpensive and environmentally benign method for the upcycling of packaging materials into functional carbon materials for electrochemical energy storage.


Asunto(s)
Carbono/química , Suministros de Energía Eléctrica , Litio/química , Embalaje de Productos , Reciclaje , Técnicas Electroquímicas , Electrodos , Iones/química , Microscopía Electrónica de Rastreo , Espectrometría Raman , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...