Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 60(10): 7228-7239, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33900076

RESUMEN

CO2 insertion into tri(µ-hydrido)triiron(II) clusters ligated by a tris(ß-diketiminate) cyclophane is demonstrated to be balanced by sterics for CO2 approach and hydride accessibility. Time-resolved NMR and UV-vis spectra for this reaction for a complex in which methoxy groups border the pocket of the hydride donor (Fe3H3L2, 4) result in a decreased activation barrier and increased kinetic isotope effect consistent with the reduced sterics. For the ethyl congener Fe3H3L1 (2), no correlation is found between rate and reaction solvent or added Lewis acids, implying CO2 coordination to an Fe center in the mechanism. The estimated hydricity (50 kcal/mol) based on observed H/D exchange with BD3 requires Fe-O bond formation in the product to offset an endergonic CO2 insertion. µ3-hydride coordination is noted to lower the activation barrier for the first CO2 insertion event in DFT calculations.

2.
Eur J Inorg Chem ; 2019(15): 2146-2153, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31787843

RESUMEN

The reduction of CO2 to formic acid by transition metal hydrides is a potential pathway to access reactive C1 compounds. To date, no kinetic study has been reported for insertion of a bridging hydride in a weak-field ligated complex into CO2; such centers have relevance to metalloenzymes that catalyze this reaction. Herein, we report the kinetic study of the reaction of a tri(µ-hydride)triiron(II/II/II) cluster supported by a tris(ß-diketimine) cyclophane (1) with CO2 monitored by 1H-NMR and temperature-controlled UV-vis spectroscopy. We found that 1 reacts with CO2 to traverse the reported monoformate (1-CO 2 ) and a diformate complex (1-2CO 2 ) at 298 K in toluene, and ultimately yields the triformate species (1-3CO 2 ) at elevated temperature. The second order rate constant, H/D kinetic isotope effect, ∆H ‡,and ∆S ‡for formation of 1-CO 2 were determined as 8.4(3)×10-4 M-1·s-1, 1.08(9), 11(1) kcal·mol-1, and -3(1)×10 cal·mol-1·K-1, respectively at 298 K. These parameters suggest that CO2 coordination to the iron centers does not coordinate prior to the rate controlling step whereas Fe-H bond cleavage does.

3.
Dalton Trans ; 48(26): 9570-9575, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31012886

RESUMEN

A cyclophane ligand (H6L) bearing three ß-oxo-δ-diimine arms and the corresponding tri-iron and -zinc complexes in which the metal ions are bridged by either chlorides, viz. Fe3Cl3(H3L) (1) and Zn3Cl3(H3L) (2), or hydrides, viz. Fe3H3(H3L) (3), Zn3H3(H3L) (4), were synthesized and characterized. 1 adopts a chair-shaped C3v-symmetric [Fe3(µ-Cl)3]3+ cluster wherein only one hemisphere of the ligand is metallated and the other three ketoimine sites remain protonated as evidenced by single crystal X-ray diffraction and vibrational and NMR spectroscopic analyses. 3 and 4 were synthesized by substitution of the bridging chlorides in 1 and 2 using KBEt3H and are accessed with retention of the three protonated ketoimine sites.

4.
Chemistry ; 22(19): 6610-6, 2016 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-27011263

RESUMEN

Multichromophore arrays allow for cascade energy transfer. As an isoelectronic analogue of indacenyl, bis(triazolo)benzene features a fused tricyclic skeleton that rigidly places two π-extended triazoles in close proximity. Such triazole-based fluorophores behave as electronically independent modules in the ground states, but become tightly coupled upon photoexcitation for highly efficient excitation energy transfer (EET) that can be gated by external stimuli. Taking this donor-acceptor fluorophore system a step further, we have designed and implemented a cascade EET. Here, the initial excitation takes part in a circular relay to arrive at the longest-wavelength emitting site as the final destination. Modularly constructed triazoloarenes should serve as versatile platforms for chemically controlled optical signaling.

5.
Nanoscale ; 7(8): 3504-10, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25628146

RESUMEN

A novel electrode fabrication technique involving a manual scribing action of vertically aligned silicon coated multiwall carbon nanotubes (VASCNTs) on a copper foil have been developed as a viable approach to Li-ion battery electrodes. The scribed electrodes were prepared without the use of any conductive additives and binders, and they were directly assembled in a coin cell. These 'binder-less' scribed Si-CNT electrodes exhibited a very high discharge capacity in excess of 3000 mA h g(-1) and a low first cycle irreversible loss (FIR) (19%). In addition, the electrodes also showed good cyclability with capacity retention of 76% at the end of 50 cycles corresponding to a fade rate of 0.48% loss per cycle rendering the technique attractive for suitable Li-ion applications.

6.
Chemistry ; 20(2): 426-34, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24390910

RESUMEN

A series of porous metal-organic frameworks having flexible carboxylic acid pendants in their pores (UiO-66-ADn: n=4, 6, 8, and 10, where n denotes the number of carbons in a pendant) has been synthesized by post-synthetic ligand exchange of terephthalate in UiO-66 with a series of alkanedioic acids (HO2 C(CH2 )n-2 CO2 H). NMR, IR, PXRD, TEM, and mass spectral data have suggested that a terephthalate linker in UiO-66 was substituted by two alkanedioate moieties, resulting in free carboxyl pendants in the pores. When post-synthetically modified UiO-66 was partially digested by adjusting the amount of added HF/sample, NMR spectra indicated that the ratio of alkanedioic acid/terephthalic acid was increased with smaller amounts of acid, implying that the ligand substitution proceeded from the outer layer of the particles. Gas sorption studies indicated that the surface areas and the pore volumes of all UiO-66-ADns were decreased compared to those of UiO-66, and that the CO2 adsorption capacities of UiO-66-ADn (n=4, 8) were similar to that of UiO-66. In the case of UiO-66-AD6, the CO2 uptake capacity was 34 % higher at 298 K and 58 % higher at 323 K compared to those of UiO-66. It was elucidated by thermodynamic calculations that the introduction of flexible carboxyl pendants of appropriate length has two effects: 1) it increases the interaction enthalpy between the host framework and CO2 molecules, and 2) it mitigates the entropy loss upon CO2 adsorption due to the formation of multiple configurations for the interactions between carboxyl groups and CO2 molecules. The ideal adsorption solution theory (IAST) selectivity for CO2 adsorption over that of CH4 was enhanced for all of the UiO-66-ADns compared to that of UiO-66 at 298 K. In particular, UiO-66-AD6 showed the most strongly enhanced CO2 uptake capacity and significantly increased selectivity for CO2 adsorption over that of CH4 at ambient temperature, suggesting that it is a promising material for sequestering CO2 from landfill gas.

7.
Chemistry ; 19(51): 17432-8, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24318268

RESUMEN

Two different 3D porous metal-organic frameworks, [Zn4O(NTN)2]·10DMA·7H2O (SNU-150) and [Zn5(NTN)4(DEF)2][NH2(C2H5)2]2·8DEF·6H2O (SNU-151), are synthesized from the same metal and organic building blocks but in different solvent systems, specifically, in the absence and the presence of a small amount of acid. SNU-150 is a doubly interpenetrated neutral framework, whereas SNU-151 is a non-interpenetrated anionic framework containing diethylammonium cations in the pores. Comparisons of the N2, H2, CO2, and CH4 gas adsorption capacities as well as the CO2 adsorption selectivity over N2 and CH4 in desolvated SNU-150' (BET: 1852 m(2) g(-1)) and SNU-151' (BET: 1563 m(2) g(-1)) samples demonstrate that the charged framework is superior to the neutral framework for gas storage and gas separation, despite its smaller surface area and different framework structure.

8.
Chem Commun (Camb) ; 48(73): 9168-70, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22872194

RESUMEN

A metal-organic framework (SNU-110) constructed from an organic ligand with flexible joints exhibits selective CO(2) adsorption over N(2), O(2), H(2) and CH(4) gases.


Asunto(s)
Dióxido de Carbono/aislamiento & purificación , Compuestos Organometálicos/química , Zinc/química , Adsorción , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Compuestos Organometálicos/síntesis química , Porosidad , Temperatura
9.
Chemistry ; 16(47): 14043-50, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20967910

RESUMEN

Metal-organic frameworks (MOFs), {[Cu(2)(bdcppi)(dmf)(2)]·10DMF·2H(2)O}(n) (SNU-50) and {[Zn(2)(bdcppi)(dmf)(3)]·6DMF·4H(2)O}(n) (SNU-51), have been prepared by the solvothermal reactions of N,N'-bis(3,5-dicarboxyphenyl)pyromellitic diimide (H(4)BDCPPI) with Cu(NO(3))(2) and Zn(NO(3))(2), respectively. Framework SNU-50 has an NbO-type net structure, whereas SNU-51 has a PtS-type net structure. Desolvated solid [Cu(2)(bdcppi)](n) (SNU-50'), which was prepared by guest exchange of SNU-50 with acetone followed by evacuation at 170 °C, adsorbs high amounts of N(2), H(2), O(2), CO(2), and CH(4) gases due to the presence of a vacant coordination site at every metal ion, and to the presence of imide groups in the ligand. The Langmuir surface area is 2450 m(2) g(-1). It adsorbs H(2) gas up to 2.10 wt% at 1 atm and 77 K, with zero coverage isosteric heat of 7.1 kJ mol(-1), up to a total of 7.85 wt% at 77 K and 60 bar. Its CO(2) and CH(4) adsorption capacities at 298 K are 77 wt% at 55 bar and 17 wt% at 60 bar, respectively. Of particular note is the O(2) adsorption capacity of SNU-50' (118 wt% at 77 K and 0.2 atm), which is the highest reported so far for any MOF. By metal-ion exchange of SNU-51 with Cu(II), {[Cu(2)(bdcppi)(dmf)(3)]·7DMF·5H(2)O}(n) (SNU-51-Cu(DMF)) with a PtS-type net was prepared, which could not be synthesized by a direct solvothermal reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...