Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11531, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773173

RESUMEN

The biogeographical range shift of insect pests is primarily governed by temperature. However, the range shift of seasonal long-distance migratory insects may be very different from that of sedentary insects. Nilaparvata lugens (BPH), a serious rice pest, can only overwinter in tropical-to-subtropical regions, and some populations migrate seasonally to temperate zones with the aid of low-level jet stream air currents. This study utilized the CLIMEX model to project the overwintering area under the climate change scenarios of RCP2.6 and RCP8.5, both in 2030s and 2080s. The overwintering boundary is predicted to expand poleward and new overwintering areas are predicted in the mid-latitude regions of central-to-eastern China and mid-to-southern Australia. With climate change, the habitable areas remained similar, but suitability decreased substantially, especially in the near-equatorial regions, owing to increasing heat stress. The range shift is similar between RCP2.6-2030s, RCP2.6-2080s, and RCP8.5-2030s, but extreme changes are projected under RCP8.5-2080s with marginal areas increasing from 27.2 to 38.8% and very favorable areas dropping from 27.5 to 3.6% compared to the current climate. These findings indicate that climate change will drive range shifts in BPH and alter regional risks differently. Therefore, international monitoring programs are needed to effectively manage these emerging challenges.


Asunto(s)
Migración Animal , Cambio Climático , Hemípteros , Oryza , Animales , Oryza/parasitología , Hemípteros/fisiología , Migración Animal/fisiología , Australia , Estaciones del Año , China , Temperatura
2.
Mitochondrial DNA B Resour ; 6(1): 56-57, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33521265

RESUMEN

The complete mitochondrial genome of Allonychiurus kimi (Lee, 1973) was sequenced, assembled, and annotated. The mitochondrial genome of A. kimi is 14,386 bp in length and contains 13 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes. A. kimi was closely clustered with the following species of the family Onychiuridae: Onychiurus orientalis, Orthonychiurus forlsomi, and Tetrodontophora bielanensis.

3.
Sci Total Environ ; 763: 144223, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33373786

RESUMEN

Hydrophytes have been widely used to reduce nutrient levels in aquatic ecosystems, but only limited species with high nutrient removal efficiencies have been implemented. Thus, it is necessary to continually explore new candidate species with high nutrient removal efficiencies. To effectively explore the nutrient removal ability of hydrophytes, a new process-based model combining the multiple-quotas approach and nutrient-cycle model was developed. The multiple-quotas approach provides a theoretical framework to conceptually explain the uptake and response of autotrophs to multiple nutrients. The developed process-based model was validated using observational data from microcosm experiments with two emergent hydrophytes, Menyanthes trifoliata and Cicuta virosa. The results showed that both M. trifoliata and C. virosa effectively reduced nitrogen (N) and phosphorus (P) in both water and sediment layers, but M. trifoliata showed a higher removal efficiency for both nutrients than C. virosa, particularly for total ammonia + ammonium-nitrogen (NHx-N) and nitrate-nitrogen (NO3-N) in the sediment layer (M. trifoliata: 0.579-0.976 for NHx-N, 0.567-0.702 for NO3-N; C. virosa: 0.212-0.501 for NHx-N, 0.466-0.560 for NO3-N). In addition, M. trifoliata achieved the maximum removal efficiency for N and P at higher nutrient exposure levels than C. virosa (M. trifoliata: exposure level of 0.725-0.775; C. virosa: exposure level of 0.550-0.575). The developed model well simulated the species-specific growth patterns of hydrophytes depending on the nutrient exposure level as well as the N and P dynamics in the water and sediment layers. The approach adopted in this study provides a useful tool for discovering candidate species to improve hydrophyte diversity and effectively remove nutrients from aquatic ecosystems.


Asunto(s)
Ecosistema , Aguas Residuales , Nitrógeno/análisis , Nutrientes , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...