Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioact Mater ; 34: 80-97, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38143565

RESUMEN

Critical limb ischemia (CLI) is a devastating disease characterized by the progressive blockage of blood vessels. Although the paracrine effect of growth factors in stem cell therapy made it a promising angiogenic therapy for CLI, poor cell survival in the harsh ischemic microenvironment limited its efficacy. Thus, an imperative need exists for a stem-cell delivery method that enhances cell survival. Here, a collagen microgel (CMG) cell-delivery scaffold (40 × 20 µm) was fabricated via micro-fragmentation from collagen-hyaluronic acid polyionic complex to improve transplantation efficiency. Culturing human adipose-derived stem cells (hASCs) with CMG enabled integrin receptors to interact with CMG to form injectable 3-dimensional constructs (CMG-hASCs) with a microporous microarchitecture and enhanced mass transfer. CMG-hASCs exhibited higher cell survival (p < 0.0001) and angiogenic potential in tube formation and aortic ring angiogenesis assays than cell aggregates. Injection of CMG-hASCs intramuscularly into CLI mice increased blood perfusion and limb salvage ratios by 40 % and 60 %, respectively, compared to cell aggregate-treated mice. Further immunofluorescent analysis revealed that transplanted CMG-hASCs have greater muscle regenerative and angiogenic potential, with enhanced cell survival than cell aggregates (p < 0.05). Collectively, we propose CMG as a cell-assembling platform and CMG-hASCs as promising therapeutics to treat CLI.

2.
Acta Biomater ; 144: 183-194, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35331938

RESUMEN

The treatment of chronic Achilles tendonitis (AT) often requires prolonged therapy and invasive therapeutic methods such as surgery or therapeutic endoscopy. To prevent the progression of chronic AT, excessive inflammation must be alleviated at an early stage. Corticosteroids or nonsteroidal anti-inflammatory drugs are generally prescribed to control inflammation; however, the high doses and long therapeutic periods required may lead to serious side effects. Herein, a local injectable poly(organophosphazene) (PPZ) - celecoxib (CXB) nanoparticle (PCNP) hydrogel system with long-term anti-inflammatory effects was developed for the treatment of tendonitis. The amphiphilic structure and thermosensitive mechanical properties of PPZ means that the hydrophobic CXB can be easily incorporated into the hydrophobic core to form PCNP at 4 °C. Following the injection of PCNP into the AT, PCNP hydrogel formed at body temperature and induced long-term local anti-inflammatory effects via sustained release of the PCNP. The therapeutic effects of the injectable PCNP system can alleviate excessive inflammation during the early stages of tissue damage and boost tissue regeneration. This study suggests that PCNP has significant potential as a long-term anti-inflammatory agent through sustained nonsteroidal anti-inflammatory drugs (NSAIDs) delivery and tissue regeneration boosting. STATEMENT OF SIGNIFICANCE: In the treatment of Achilles tendinitis, a long-term anti-inflammatory effect is needed to alleviate excessive inflammation and induce regeneration of the damaged Achilles tendon. Injectable poly(organophosphazene)(PPZ)-celecoxib(CXB) nanoparticles (PCNP) generated a long-term, localized-anti-inflammatory effect in the injected region, which successfully induced the expression of anti-inflammatory cytokines and suppressed pro-inflammatory cytokines, while the PCNPs degraded completely. Accordingly, regeneration of the damaged Achilles tendon was achieved through the long-term anti-inflammatory effect induced by a single PCNP injection. The PCNP system therefore has great potential in long-term NSAIDs delivery for various tissue engineering applications.


Asunto(s)
Tendón Calcáneo , Nanopartículas , Tendinopatía , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos , Celecoxib/farmacología , Celecoxib/uso terapéutico , Citocinas/farmacología , Humanos , Hidrogeles/química , Inflamación/tratamiento farmacológico , Nanopartículas/química , Nanopartículas/uso terapéutico , Tendinopatía/tratamiento farmacológico
3.
Bioact Mater ; 7: 14-25, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34466714

RESUMEN

Treatment of osteoarthritis (OA) by administration of corticosteroids is a commonly used method in clinics using anti-inflammatory medicine. Oral administration or intra-articular injection of corticosteroids can reduce the pain and progress of cartilage degeneration, but they are usually insufficient to show local and long-term anti-inflammatory effects because of their fast clearance in the body. In this study, we suggest an injectable anti-OA drug depot system for sustained drug release that provides long-term effective therapeutic advantages. Amphiphilic poly(organophosphazene), which has temperature-dependent nanoparticle forming and sol-gel transition behaviors when dissolved in aqueous solution, was synthesized for triamcinolone acetonide (TCA) delivery. Because hydrophobic parts of the polymer can interact with hydrophobic parts of the TCA, the TCA was encapsulated into the self-assembled polymeric nanoparticles. The TCA-encapsulated polymeric nanoparticles (TePNs) were well dispersed in an aqueous solution below room temperature so that they can be easily injected as a sol state into an intra-articular region. However, the TePNs solution transforms immediately to a viscose 3D hydrogel like a synovial fluid in the intra-articular region via the conducted body temperature. An in vitro TCA release study showed sustained TCA release for six weeks. One-time injection of the TePN hydrogel system in an early stage of OA-induced rat model showed a great inhibition effect against further OA progression. The OA-induced knees completely recovered as a healthy cartilage without any abnormal symptoms.

4.
Adv Sci (Weinh) ; 6(17): 1900597, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31508277

RESUMEN

Stem-cell-based tissue engineering requires increased stem cell retention, viability, and control of differentiation. The use of biocompatible scaffolds encapsulating stem cells typically addresses the first two problems. To achieve control of stem cell fate, fine-tuned biocompatible scaffolds with bioactive molecules are necessary. However, given that the fine-tuning of stem cell scaffolds is associated with UV irradiation and in situ scaffold gelation, this process is in conflict with injectability. Herein, a fine-tunable and injectable 3D hydrogel system is developed with the use of thermosensitive poly(organophosphazene) bearing ß-cyclodextrin (ß-CD PPZ) and two types of adamantane-peptides (Ad-peptides) that are associated with mesenchymal stem cell (MSC) differentiation and that serve as stoichiometrically controlled pendants for fine-tuning. Given that complexation of hosts and guests subject to strict stoichiometric control is achieved with simple mixing, these fabricated hydrogels exhibit well-aligned, fine-tuning responses, even in living animals. Injection of MSCs in fine-tuned hydrogels also results in various chondrogenic differentiation levels at three weeks postinjection. This is attributed to the differential controls of Ad-peptides, if MSC preconditioning is excluded. Eventually, the fine-tunable and injectable 3D hydrogel could be applied as platform technology by simply switching the types of peptides bearing adamantane and their stoichiometry.

5.
Biomaterials ; 218: 119338, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31310953

RESUMEN

Host-guest interaction using ß-cyclodextrin (ß-CD) and adamantane (Ad) allows facile modulation of guest molecule concentration in 3D hydrogels. Based on this phenomenon, we prepared a thermosensitive poly(organophosphazene) bearing ß-CD hydrogel (ß-CD PPZ, as host) and Ad-Arg-Gly-Asp (Ad-RGD, as guest). The structures of synthesized thermosensitive ß-CD PPZ and Ad-RGD were confirmed by 1H NMR and FT-IR. The ß-CD PPZ/Ad-RGD mixture was prepared by simple mixing and elicited thermosensitive properties with the formation of gelation in all Ad-RGDs mixing proportions at the body temperature. Strong and controlled host-guest interactions between ß-CD PPZ and Ad-RGD were observed in 2D-NOESY, DLS, and TEM. Regulated MSC behaviors were elicited based on the use of controlled Ad-RGD amounts at the level of in vitro and in vivo. As the amount of Ad-RGD was increased in the ß-CD PPZ hydrogel, MSC survival rate was enhanced and was prone to express osteogenic factors. While Ad-RGD is absent or low in hydrogel, relatively poor MSC survival rate and adipogenesis were exhibited. Altogether, we verified that survival rate and differentiation of MSCs could be controlled by host-guest interaction system with thermosensitive 3D hydrogel. This proposed 3D hydrogel controlling system with host-guest interaction is expected to be a platform technology as changing guest molecules.


Asunto(s)
Hidrogeles/química , Nicho de Células Madre/fisiología , Adipogénesis/fisiología , Animales , Células Cultivadas , Femenino , Espectroscopía de Resonancia Magnética , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Espectroscopía Infrarroja por Transformada de Fourier , Tasa de Supervivencia , beta-Ciclodextrinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...