Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 101: 129656, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355061

RESUMEN

To discover mode-selective TRPV1 antagonists as thermoneutral drug candidates, the previous potent antagonist benzopyridone 2 was optimized based on the pharmacophore A- and C-regions. The structure activity relationship was investigated systematically by modifying the A-region by incorporating a polar side chain on the pyridone and then by changing the C-region with a variety of substituted pyridine and pyrazole moieties. The 3-t-butyl and 3-(1-methylcyclopropyl) pyrazole C-region analogs provided high potency as well as mode-selectivity. Among them, 51 and 54 displayed potent and capsaicin-selective antagonism with IC50 = 2.85 and 3.27 nM to capsaicin activation and 28.5 and 31.5 % inhibition at 3 µM concentration toward proton activation, respectively. The molecular modeling study of 51 with our homology model indicated that the hydroxyethyl side chain in the A-region interacted with Arg557 and Glu570, the urea B-region engaged in hydrogen bonding with Tyr511 and Thr550, respectively, and the pyrazole C-region made two hydrophobic interactions with the receptor. Optimization of antagonist 2, which has full antagonism for activators of all modes, lead to mode-selective antagonists 51 and 54. These observations will provide insight into the future development of clinical TRPV1 antagonists without target-based side effects.


Asunto(s)
Capsaicina , Urea , Urea/química , Capsaicina/farmacología , Relación Estructura-Actividad , Modelos Moleculares , Pirazoles/farmacología , Canales Catiónicos TRPV
2.
Chem Sci ; 14(35): 9293-9305, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37712013

RESUMEN

The underlying causes of Alzheimer's disease (AD) remain a mystery, with multiple pathological components, including oxidative stress, acetylcholinesterase, amyloid-ß, and metal ions, all playing a role. Here we report a strategic approach to designing flavonoids that can effectively tackle multiple pathological elements involved in AD. Our systematic investigations revealed key structural features for flavonoids to simultaneously target and regulate pathogenic targets. Our findings led to the development of a highly promising flavonoid that exhibits a range of functions, based on a complete structure-activity relationship analysis. Furthermore, our mechanistic studies confirmed that this flavonoid's versatile reactivities are driven by its redox potential and direct interactions with pathogenic factors. This work highlights the potential of multi-target-directed flavonoids as a novel solution in the fight against AD.

3.
Proc Natl Acad Sci U S A ; 120(20): e2300763120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155889

RESUMEN

KEAP1 (Kelch-like ECH-associated protein), a cytoplasmic repressor of the oxidative stress responsive transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), senses the presence of electrophilic agents by modification of its sensor cysteine residues. In addition to xenobiotics, several reactive metabolites have been shown to covalently modify key cysteines on KEAP1, although the full repertoire of these molecules and their respective modifications remain undefined. Here, we report the discovery of sAKZ692, a small molecule identified by high-throughput screening that stimulates NRF2 transcriptional activity in cells by inhibiting the glycolytic enzyme pyruvate kinase. sAKZ692 treatment promotes the buildup of glyceraldehyde 3-phosphate, a metabolite which leads to S-lactate modification of cysteine sensor residues of KEAP1, resulting in NRF2-dependent transcription. This work identifies a posttranslational modification of cysteine derived from a reactive central carbon metabolite and helps further define the complex relationship between metabolism and the oxidative stress-sensing machinery of the cell.


Asunto(s)
Cisteína , Factor 2 Relacionado con NF-E2 , Proteína 1 Asociada A ECH Tipo Kelch/química , Factor 2 Relacionado con NF-E2/metabolismo , Cisteína/metabolismo , Transducción de Señal , Estrés Oxidativo
4.
Chem Sci ; 14(20): 5340-5349, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37234895

RESUMEN

Cytochrome c (Cyt c), a multifunctional protein with a crucial role in controlling cell fate, has been implicated in the amyloid pathology associated with Alzheimer's disease (AD); however, the interaction between Cyt c and amyloid-ß (Aß) with the consequent impact on the aggregation and toxicity of Aß is not known. Here we report that Cyt c can directly bind to Aß and alter the aggregation and toxicity profiles of Aß in a manner that is dependent on the presence of a peroxide. When combined with hydrogen peroxide (H2O2), Cyt c redirects Aß peptides into less toxic, off-pathway amorphous aggregates, whereas without H2O2, it promotes Aß fibrillization. The mechanisms behind these effects may involve a combination of the complexation between Cyt c and Aß, the oxidation of Aß by Cyt c and H2O2, and the modification of Cyt c by H2O2. Our findings demonstrate a new function of Cyt c as a modulator against Aß amyloidogenesis.

5.
JACS Au ; 2(9): 2001-2012, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36186552

RESUMEN

Developing chemical methodologies to directly modify harmful biomolecules affords the mitigation of their toxicity by persistent changes in their properties and structures. Here we report compact photosensitizers composed of the anthraquinone (AQ) backbone that undergo excited-state intramolecular hydrogen transfer, effectively oxidize amyloidogenic peptides, and, subsequently, alter their aggregation pathways. Density functional theory calculations showed that the appropriate position of the hydroxyl groups in the AQ backbone and the consequent intramolecular hydrogen transfer can facilitate the energy transfer to triplet oxygen. Biochemical and biophysical investigations confirmed that these photoactive chemical reagents can oxidatively vary both metal-free amyloid-ß (Aß) and metal-bound Aß, thereby redirecting their on-pathway aggregation into off-pathway as well as disassembling their preformed aggregates. Moreover, the in vivo histochemical analysis of Aß species produced upon photoactivation of the most promising candidate demonstrated that they do not aggregate into oligomeric or fibrillar aggregates in the brain. Overall, our combined computational and experimental studies validate a light-based approach for designing small molecules, with minimum structural complexity, as chemical reagents targeting and controlling amyloidogenic peptides associated with neurodegenerative disorders.

6.
Chem Sci ; 12(28): 9673-9681, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34349938

RESUMEN

The mechanism of [2 + 2] cycloadditions activated by visible light and catalyzed by bis-cyclometalated Rh(iii) and Ir(iii) photocatalysts was investigated, combining density functional theory calculations and spectroscopic techniques. Experimental observations show that the Rh-based photocatalyst produces excellent yield and enantioselectivity whereas the Ir-photocatalyst yields racemates. Two different mechanistic features were found to compete with each other, namely the direct photoactivation of the catalyst-substrate complex and outer-sphere triplet energy transfer. Our integrated analysis suggests that the direct photocatalysis is the inner working of the Rh-catalyzed reaction, whereas the Ir catalyst serves as a triplet sensitizer that activates cycloaddition via an outer-sphere triplet excited state energy transfer mechanism.

7.
Chem Sci ; 11(37): 10243-10254, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34094290

RESUMEN

Amyloid-ß (Aß) accumulation, metal ion dyshomeostasis, oxidative stress, and cholinergic deficit are four major characteristics of Alzheimer's disease (AD). Herein, we report the reactivities of 12 flavonoids against four pathogenic elements of AD: metal-free and metal-bound Aß, free radicals, and acetylcholinesterase. A series of 12 flavonoids was selected based on the molecular structures that are responsible for multiple reactivities including hydroxyl substitution and transfer of the B ring from C2 to C3. Our experimental and computational studies reveal that the catechol moiety, the hydroxyl groups at C3 and C7, and the position of the B ring are important for instilling multiple functions in flavonoids. We establish a structure-activity relationship of flavonoids that should be useful for designing chemical reagents with multiple reactivities against the pathological factors of AD.

8.
Chem Rev ; 119(11): 6509-6560, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31066549

RESUMEN

Until recently, computational tools were mainly used to explain chemical reactions after experimental results were obtained. With the rapid development of software and hardware technologies to make computational modeling tools more reliable, they can now provide valuable insights and even become predictive. In this review, we highlighted several studies involving computational predictions of unexpected reactivities or providing mechanistic insights for organic and organometallic reactions that led to improved experimental results. Key to these successful applications is an integration between theory and experiment that allows for incorporation of empirical knowledge with precise computed values. Computer modeling of chemical reactions is already a standard tool that is being embraced by an ever increasing group of researchers, and it is clear that its utility in predictive reaction design will increase further in the near future.

9.
Bioorg Med Chem ; 27(7): 1370-1381, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30827868

RESUMEN

On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Rotenona/análogos & derivados , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Rotenona/síntesis química , Rotenona/química , Rotenona/farmacología , Relación Estructura-Actividad
10.
J Org Chem ; 83(16): 9370-9380, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-29924610

RESUMEN

Novel scorpionate-type organocatalysts capable of effectively coupling carbon dioxide and epoxides under mild conditions to afford cyclic propylene carbonates were developed. On the basis of a combined experimental and computational study, a precise mechanistic proposal was developed and rational optimization strategies were identified. The epoxide ring-opening, which requires an iodide as a nucleophile, was enhanced by utilizing an immonium functionality that can form an ion pair with iodide, making the ring-opening process intramolecular. The CO2 activation and cyclic carbonate formation were catalyzed by the concerted action of two hydrogen bonds originating from two phenolic groups placed at the claw positions of the scorpionate scaffold. Electronic tuning of the hydrogen bond donors allowed to identify a new catalyst that can deliver >90% yield for a variety of epoxide substrates within 7 h at room temperature under a CO2 pressure of only 10 bar, and is highly recyclable.

11.
J Am Chem Soc ; 140(2): 834-841, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29277991

RESUMEN

Grubbs-type olefin metathesis catalysts are known to cyclopolymerize 1,6-heptadiynes to afford conjugated polyenes containing five- or six-membered carbocycles. Although high levels of regioselectivity up to >99:1 were observed previously for the formation of five-membered rings, it was neither possible to deliberately obtain six-membered rings at similar levels of selectivity nor understood why certain catalysts showed this selectively. Combining experimental and computational methods, a novel and general theory for what controls the regiochemistry of these cyclopolymerizations is presented. The electronic demands of the ruthenium-based Fischer carbenes are found to innately prefer to form five-membered rings. Reducing the electrophilicity of the carbene by enforcing a trigonal-bipyramidal structure for the ruthenium, where stronger π-backdonation increases the electron density on the carbene, is predicted to invert the regioselectivity. Subsequent experiments provide strong support for the new concept, and it is possible to completely switch the regioselectivity to a ratio of <1:99.

12.
J Am Chem Soc ; 139(13): 4901-4915, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28282136

RESUMEN

We recently reported a bis(imino)pyridine (or pyridine diimine, PDI) manganese precatalyst, (Ph2PPrPDI)Mn (1), that is active for the hydrosilylation of ketones and dihydrosilylation of esters. In this contribution, we reveal an expanded scope for 1-mediated hydrosilylation and propose two different mechanisms through which catalysis is achieved. Aldehyde hydrosilylation turnover frequencies (TOFs) of up to 4900 min-1 have been realized, the highest reported for first row metal-catalyzed carbonyl hydrosilylation. Additionally, 1 has been shown to mediate formate dihydrosilylation with leading TOFs of up to 330 min-1. Under stoichiometric and catalytic conditions, addition of PhSiH3 to (Ph2PPrPDI)Mn was found to result in partial conversion to a new diamagnetic hydride compound. Independent preparation of (Ph2PPrPDI)MnH (2) was achieved upon adding NaEt3BH to (Ph2PPrPDI)MnCl2 and single-crystal X-ray diffraction analysis revealed this complex to possess a capped trigonal bipyramidal solid-state geometry. When 2,2,2-trifluoroacetophenone was added to 1, radical transfer yielded (Ph2PPrPDI·)Mn(OC·(Ph)(CF3)) (3), which undergoes intermolecular C-C bond formation to produce the respective Mn(II) dimer, [(µ-O,Npy-4-OC(CF3)(Ph)-4-H-Ph2PPrPDI)Mn]2 (4). Upon finding 3 to be inefficient and 4 to be inactive, kinetic trials were conducted to elucidate the mechanisms of 1- and 2-mediated hydrosilylation. Varying the concentration of 1, substrate, and PhSiH3 revealed a first order dependence on each reagent. Furthermore, a kinetic isotope effect (KIE) of 2.2 ± 0.1 was observed for 1-catalyzed hydrosilylation of diisopropyl ketone, while a KIE of 4.2 ± 0.6 was determined using 2, suggesting 1 and 2 operate through different mechanisms. Although kinetic trials reveal 1 to be the more active precatalyst for carbonyl hydrosilylation, a concurrent 2-mediated pathway is more efficient for carboxylate hydrosilylation. Considering these observations, 1-catalyzed hydrosilylation is believed to proceed through a modified Ojima mechanism, while 2-mediated hydrosilylation occurs via insertion.

13.
Bioorg Med Chem ; 24(22): 6082-6093, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27745993

RESUMEN

Based on the lead compound L-80 (compound 2), a potent heat shock protein 90 (HSP90) inhibitor, a series of C-ring truncated deguelin analogs were designed, synthesized and evaluated for Hypoxia Inducible Factor-1α (HIF-1α) inhibition as a primary screening method. Their structure-activity relationship was investigated in a systematic manner by varying the A/B ring, linker and D/E ring, respectively. Among the synthesized inhibitors, compound 5 exhibited potent HIF-1α inhibition in a dose-dependent manner and significant antitumor activity in human non-small cell lung carcinoma (H1299), with better activities than L-80. It also inhibited in vitro hypoxia-mediated angiogenic processes in human retinal microvascular endothelial cells (HRMEC). The docking study of 5 showed a similar binding mode as L-80: it occupied the C-terminal ATP-binding pocket of HSP90, indicating that the anticancer and antiangiogenic activities of 5 were derived from HIF-1α destabilization by inhibiting the C-terminal ATP-binding site of hHSP90.


Asunto(s)
Antineoplásicos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neovascularización Patológica/tratamiento farmacológico , Rotenona/análogos & derivados , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Modelos Moleculares , Estructura Molecular , Neovascularización Patológica/patología , Rotenona/síntesis química , Rotenona/química , Rotenona/farmacología , Relación Estructura-Actividad
14.
Eur J Med Chem ; 104: 157-64, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26457742

RESUMEN

A series of fluorophenyl and pyridine analogues of 1 and 2 were synthesized as ring-truncated deguelin surrogates and evaluated for their HIF-1α inhibition. Their structure-activity relationship was systematically investigated based on the variation of the linker B-region moiety. Among the inhibitors, compound 25 exhibited potent HIF-1α inhibition in a dose-dependent manner and significant antitumor activity in H1299 with less toxicity than deguelin. It also inhibited in vitro hypoxia-mediated angiogenic processes in HRMECs. The docking study indicates that 25 occupied the C-terminal ATP-binding pocket of HSP90 in a similar mode as 1, which implies that the anticancer and antiangiogenic activities of 25 are derived from HIF-1α destabilization by binding to the C-terminal ATP-binding site of hHSP90.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Rotenona/análogos & derivados , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Endoteliales/efectos de los fármacos , Humanos , Estructura Molecular , Vasos Retinianos/citología , Vasos Retinianos/efectos de los fármacos , Rotenona/síntesis química , Rotenona/química , Rotenona/farmacología , Relación Estructura-Actividad
15.
Bioorg Med Chem Lett ; 25(11): 2326-30, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25937016

RESUMEN

A series of α-substituted acetamide derivatives of previously reported 2-(3-fluoro-4-methylsulfonamidophenyl)propanamide leads (1, 2) were investigated for antagonism of hTRPV1 activation by capsaicin. Compound 34, which possesses an α-m-tolyl substituent, showed highly potent and selective antagonism of capsaicin with Ki(CAP)=0.1 nM. It thus reflected a 3-fold improvement in potency over parent 1. Docking analysis using our homology model indicated that the high potency of 34 might be attributed to a specific hydrophobic interaction of the m-tolyl group with the receptor.


Asunto(s)
Acetamidas/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Acetamidas/química , Animales , Células CHO , Capsaicina/farmacología , Cricetinae , Cricetulus , Estructura Molecular , Relación Estructura-Actividad , Canales Catiónicos TRPV/metabolismo
16.
Eur J Med Chem ; 93: 101-8, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25659771

RESUMEN

A series of pyridine derivatives in the C-region of N-((6-trifluoromethyl-pyridin-3-yl)methyl) 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. The SAR analysis indicated that 6-difluorochloromethyl pyridine derivatives were the best surrogates of the C-region for previous leads. Among them, compound 31 showed excellent antagonism to capsaicin as well as to multiple hTRPV1 activators. It demonstrated strong analgesic activity in the formalin test in mice with full efficacy and it blocked capsaicin-induced hypothermia in vivo.


Asunto(s)
Analgésicos/síntesis química , Bencenoacetamidas/síntesis química , Piridinas/química , Sulfonamidas/síntesis química , Canales Catiónicos TRPV/antagonistas & inhibidores , Analgésicos/química , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Bencenoacetamidas/química , Bencenoacetamidas/farmacología , Bencenoacetamidas/uso terapéutico , Ratones , Estructura Molecular , Dolor/tratamiento farmacológico , Dimensión del Dolor , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA