Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(11): 19034-19041, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859047

RESUMEN

The efficiency of pulsed laser ablation has always been the focus point of research. A novel high-frequency electromagnetic induction heating-assisted laser ablation scheme is proposed and investigated to enhance the efficiency and improve the surface processing quality during the nanosecond laser ablation of metal substrates. To reduce laser energy required to reach the ablation threshold of metal, this method utilizes the electromagnetic induction to rapidly elevate substrate temperature, making the metal easier to be ablated. The results show that ablation width increases 16% and ablation depth increases 31% with the assistance of electromagnetic induction heating at a laser fluence of 1.32 J/cm2, which increases 90% of the laser-ablated volume. Meanwhile, the surface ablation quality is significantly improved due to the smaller temperature gradient around the ablation region. This new method has great potentials in the laser micromachining at a higher processing efficiency and better laser-processed surface quality.

2.
Sci Total Environ ; 920: 171010, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38369148

RESUMEN

Polyfluoroalkyl phosphate esters (PAPs) are a group of emerging alternatives to the legacy per- and polyfluoroalkyl substances (PFAS). To better understand the transport and risk of PAPs in the water cycle, 21 PFAS including 4 PAPs and 17 perfluoroalkyl acids were investigated in multiple waterbodies in an urban area, China. PFAS concentrations ranged from 85.8 to 206 ng/L, among which PAPs concentrations ranged from 35.0 to 71.8 ng/L, in river and lake water with major substances of perfluorooctanoic acid (PFOA), 6:2 fluorotelomer phosphate (6:2 monoPAP), and 8:2 fluorotelomer phosphate (8:2 monoPAP). As transport pathways, municipal wastewater and precipitation were investigated for PFAS mass loading estimation, and PAPs transported via precipitation more than municipal wastewater discharge. Concentrations of PFAS in tap water and raw source water were compared, and PAPs cannot be removed by drinking water treatment. In tap water, PFAS concentrations ranged from 132 to 271 ng/L and among them PAPs concentrations ranged from 41.6 to 61.9 ng/L. Human exposure and health risk to PFAS via drinking water were assessed, and relatively stronger health risks were induced from PFOS, PAPs, and PFOA. The environmental contamination and health risk of PAPs are of concern, and management implications regarding their sources, exposure, and hazards were raised.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Aguas Residuales , Ciclo Hidrológico , Contaminantes Químicos del Agua/análisis , Fosfatos , Fluorocarburos/análisis , China
3.
Adv Mater ; 36(8): e2310106, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38014724

RESUMEN

Enhancing electrocatalytic performance through structural and compositional engineering attracts considerable attention. However, most materials only function as pre-catalysts and convert into "real catalysts" during electrochemical reactions. Such transition involves dramatic structural and compositional changes and disrupts their designed properties. Herein, for the first time, a laser-ironing (LI) approach capable of in-situ forming a laser-ironing capping layer (LICL) on the Co-ZIF-L flakes is developed. During the oxygen evolution reaction (OER) process, the LICL sustains the leaf-like morphology and promotes the formation of OER-active Co3 O4 nanoclusters with the highest activity and stability. In contrast, the pristine and conventional heat-treated Co-ZIF-Ls both collapse and transform to less active CoOOH. The density functional theory (DFT) calculations pinpoint the importance of the high spin (HS) states of Co ions and the narrowed band gap in Co3 O4 nanoclusters. They enhance the OER activity by promoting spin-selected electron transport, effectively lowering the energy barrier and realizing a spontaneous O2 -releasing step that is the potential determining step (pds) in CoOOH. This study presents an innovative approach for modulating both structural and compositional evolutions of electrocatalysts during the reaction, sustaining stability with high performance during dynamic electrochemical reactions, and providing new pathways for facile and high-precision surface microstructure control.

4.
J Hazard Mater ; 465: 133270, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113743

RESUMEN

The increasing applications of emerging per- and polyfluoroalkyl substances (PFAS) have raised global concern. However, the release of emerging PFAS from the fluorochemical industry remains unclear. Herein, the occurrence of 48 emerging and legacy PFAS in wastewater from 10 fluorochemical manufacturers and mass flows of PFAS in a centralized wastewater treatment plant were investigated. Their distribution and ecological risk in neighboring riverine water were also evaluated. In wastewater from fluorochemical manufacturers, PFAS concentrations were in the range of 14,700-5200,000 ng/L and 2 H,2 H-perfluorooctanoic acid (6:2 FTCA), perfluorooctanoic acid (PFOA), N-ethyl perfluorooctane sulfonamide (N-EtFOSA), and 1 H,1 H,2 H,2 H-perfluorodecanesulfonate (8:2 FTS) were the major PFAS detected. Several PFAS displayed increased mass flows after wastewater treatment, especially PFOA and 6:2 FTCA. The mass flows of PFAS increased from - 20% to 233% after the activated sludge system but decreased by only 0-13% after the activated carbon filtration. In riverine water, PFAS concentrations were in the range of 5900-39,100 ng/L and 6:2 FTCA, 1 H,1 H,2 H,2 H-perfluorodecyl phosphate monoester (8:2 monoPAP), 1 H,1 H,2 H,2 H-perfluorooctyl phosphate monoester (6:2 monoPAP), PFOA, and perfluorohexanoic acid (PFHxA) were the major PFAS detected. PFOA and 6:2 FTCA exhibited comparable hazard quotients for ecological risk. Current wastewater treatment processes cannot fully remove various PFAS discharged by fluorochemical manufacturers, and further investigations on their risk are needed for better chemical management.

5.
Lab Chip ; 23(13): 3070-3079, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37287339

RESUMEN

Optical microscopic imaging techniques are essential in biology and chemistry fields to observe and extract dynamic information of micro/nano-scale samples in microfluidic devices. However, the current microfluidic optical imaging schemes encounter dilemmas in simultaneously possessing high spatial and temporal resolutions. Recently, microsphere nanoscope has emerged as a competitive nano-imaging tool due to its merits like high spatial resolution, real-time imaging abilities, and cost-effectiveness, which make it a potential solution to address the aforementioned challenges. Here, a microsphere compound lens (MCL) integrated microfluidic imaging device is proposed for real-time super-resolution imaging. The MCL consists of two vertically stacked microspheres, which can resolve nano-objects with size beyond the optical diffraction limit and generate an image of the object with a magnification up to 10×. Exploiting the extraordinary nano-imaging and magnification ability of the MCL, optically transparent 100 nm polystyrene particles in flowing fluid can be discerned in real time by the microfluidic device under a 10× objective lens. Contrary to this, the single microsphere and the conventional optical microscope are incompetent in this case regardless of the magnification of objective lenses used, which demonstrates the superiority of the MCL imaging scheme. Besides, applications of the microfluidic device in nanoparticle tracing and live-cell monitoring are also experimentally demonstrated. The MCL integrated microfluidic imaging device can thus be a competent technique for diverse biology and chemistry applications.

6.
Light Sci Appl ; 12(1): 122, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198159

RESUMEN

Electrically programmed metasurfaces provide large modulation depth, high modulation rate, and solid-state component, breaking the limitations of existing modulation methods.

7.
iScience ; 26(3): 106173, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36926652

RESUMEN

Deep learning method is applied to spectral detection due to the advantage of not needing feature engineering. In this work, the deep neural network (DNN) model is designed to perform data mining on the laser-induced breakdown spectroscopy (LIBS) spectra of the ore. The potential of heat diffusion for an affinity-based transition embedding model is first used to perform nonlinear mapping of fully connected layer data in the DNN model. Compared with traditional methods, the DNN model has the highest recognition accuracy rate (75.92%). A training set update method based on DNN output is proposed, and the final model has a recognition accuracy of 85.54%. The method of training set update proposed in this work can not only obtain the sample labels quickly but also improve the accuracy of deep learning models. The results demonstrate that LIBS combined with the DNN model is a valuable tool for ore classification at a high accuracy rate.

8.
Light Sci Appl ; 12(1): 49, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854662

RESUMEN

Optical microsphere nanoscope has great potential in the inspection of integrated circuit chips for semiconductor industry and morphological characterization in biology due to its superior resolving power and label-free characteristics. However, its resolution in ambient air is restricted by the magnification and numerical aperture (NA) of microsphere. High magnification objective lens is required to be coupled with microsphere for nano-imaging beyond the diffraction limit. To overcome these challenges, in this work, high refractive index hyper-hemi-microspheres with tunable magnification up to 10× are proposed and realized by accurately tailoring their thickness with focused ion beam (FIB) milling. The effective refractive index is put forward to guide the design of hyper-hemi-microspheres. Experiments demonstrate that the imaging resolution and contrast of a hyper-hemi-microsphere with a higher magnification and larger NA excel those of a microsphere in air. Besides, the hyper-hemi-microsphere could resolve ~50 nm feature with higher image fidelity and contrast compared with liquid immersed high refractive index microspheres. With a hyper-hemi-microsphere composed microscale compound lens configuration, sub-50 nm optical imaging in ambient air is realized by only coupling with a 10× objective lens (NA = 0.3), which enhances a conventional microscope imaging power about an order of magnitude.

9.
ACS Nano ; 17(3): 2611-2619, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36533993

RESUMEN

Silicon (Si) photovoltaic devices present possible avenues for overcoming global energy and environmental challenges. The high reflection and surface recombination losses caused by the Si interface and its nanofabrication process are the main hurdles for pursuing a high energy conversion efficiency. However, recent advances have demonstrated great success in improving device performance via proper Si interface modification with the optical and electrical features of two-dimensional (2D) materials. Firmly integrating large-area 2D materials with 3D Si nanostructures with no gap in between, which is essential for optimizing device performance, has rarely been achieved by any technique due to the complex 3D morphology of the nanostructures. Here we propose the concept of a 3D conformal coating of graphene metamaterials, in which the 2D graphene layers perfectly adapt to the 3D Si curvatures, leading to a universal 20% optical reflection decrease and a 60% surface passivation improvement. In a further application of this metamaterial 3D conformal coating methodology to standard Si solar cells, an overall 23% enhancement of the solar energy conversion efficiency is achieved. The 3D conformal coating strategy could be readily extended to various optoelectronic and semiconductor device systems with peculiar performance, offering a pathway for highly efficient energy-harvesting and storage solutions.

10.
Opt Express ; 30(21): 37686-37696, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258352

RESUMEN

Metasurfaces, which possess unprecedented capabilities in manipulating electromagnetic wavefronts, are promising for accurate complex amplitude modulation with a compact device. However, current strategy of complex amplitude modulation based on metasurfaces focuses on anisotropic unit design which is intrinsically constrained of polarization states. In this study, we propose a design methodology of polarization-independent metasurface which comprises an array of nanocylinders with various radii and heights. The effectiveness of the proposed scheme is verified using an optical vortex generator and a complex-amplitude hologram device. The straightforward, cost-effective, and polarization-independent design can provide robust and reliable solutions for wavefronts modulation in various optical applications.

11.
Opt Express ; 30(16): 28279-28289, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299027

RESUMEN

Microspheres as special optical lenses have extensive applications due to their super-focusing ability and outstanding resolving power on imaging. The interface reflection between the microsphere and sample surface significantly affects nano-imaging as exhibited in the form of the Newton's rings pattern in virtual images. In this work, a new scheme of decorating the microsphere with a dielectric bilayer thin film is proposed to suppress the interface reflection and thus enhance the imaging performance. The particle swarm optimization algorithm is performed with a full-wave simulation to refine the bilayer thin film decorated microsphere design, which is successfully realized via a novel fabrication strategy. Experimental imaging results demonstrate that the Newton's rings pattern in virtual images is substantially diminished. Both the imaging contrast and effective field-of-view of the microsphere nano-imaging are improved via this effective light manipulation scheme, which is also applicable to promoting the performance of the microsphere in other optical applications.

12.
Nano Lett ; 22(17): 7005-7010, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35980159

RESUMEN

Nanogrooves with a minimum feature size down to 30 nm (λ/26) can be formed directly on silicon surface by irradiation from two orthogonal polarized 1064 nm/10 ns fiber laser beams. The creation of such small nanogrooves is attributed to surface thermal stress during resolidification and supercooling with the double laser beams' irradiation. By varying the pulse number and laser fluence, the feature size of narrow grooves on silicon surface can be tuned. The experimental results and numerical calculation of surface thermal behaviors indicated that the high repetition rate of the nanosecond laser leads to the incubation effect and different silicon optical and thermal properties during laser irradiation. Resolution on this scale should be attractive in nanolithography, particularly considering that this method is available in far field and in ambient air.

13.
Nat Commun ; 13(1): 3369, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690594

RESUMEN

Mechanical properties of hydrogels are crucial to emerging devices and machines for wearables, robotics and energy harvesters. Various polymer network architectures and interactions have been explored for achieving specific mechanical characteristics, however, extreme mechanical property tuning of single-composition hydrogel material and deployment in integrated devices remain challenging. Here, we introduce a macromolecule conformational shaping strategy that enables mechanical programming of polymorphic hydrogel fiber based devices. Conformation of the single-composition polyelectrolyte macromolecule is controlled to evolve from coiling to extending states via a pH-dependent antisolvent phase separation process. The resulting structured hydrogel microfibers reveal extreme mechanical integrity, including modulus spanning four orders of magnitude, brittleness to ultrastretchability, and plasticity to anelasticity and elasticity. Our approach yields hydrogel microfibers of varied macromolecule conformations that can be built-in layered formats, enabling the translation of extraordinary, realistic hydrogel electronic applications, i.e., large strain (1000%) and ultrafast responsive (~30 ms) fiber sensors in a robotic bird, large deformations (6000%) and antifreezing helical electronic conductors, and large strain (700%) capable Janus springs energy harvesters in wearables.


Asunto(s)
Hidrogeles , Polímeros , Elasticidad , Polielectrolitos
14.
Opt Express ; 30(5): 7566-7579, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299516

RESUMEN

Directional emission source is one of the key components for multiple-view three-dimensional display. It is hard to achieve high efficiency and large deflection angle direction sources via geometric optics due to the weak confinement of light. The metasurface especially metagrating provides a promising method to control light effectively. However, the conventional forward design methods for metasurface are inherently limited by insufficient control of Bloch modes, which causes a significant efficiency drop at a large deflection angle. Here, we obtained high efficiency large deflection angle metagratings by realizing the constructive interferences among the propagation Bloch modes and enhancing the outcoupling effect at the desired diffraction order. The grating structures that support the coupling of Bloch modes were designed by an inverse design method for different incident wavelengths, and the total phase response of a supercell can be tailored. For a red (620 nm) incident light, the theoretical deflection efficiency of a silicon metagrating can be higher than 80% from 30° to 80°. The experimental deflection efficiency can achieve 86.43% for a 75° deflection metagrating. The matched simulation and experimental results strongly support the reliability of developed algorithm. Our inverse design approach could be extended to the green (530 nm) and blue (460 nm) incident light with titanium dioxide metagratings, with theoretical deflection efficiency of over 80% in a large deflection angle range of 30° to 80°. Considering the multiple visible wavelength deflection capability, the developed algorithm can be potentially applied for full color three-dimensional display, and other functional metagrating devices based on different dielectric materials.

15.
Water Res ; 206: 117775, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706320

RESUMEN

Metrafenone (MF), as a new type of benzophenone fungicide, has been widely used in agriculture and is persistent in the environment. Understanding its photochemical fate is essential for the comprehensive evaluation of its ecological risk. In the present work, we reported a detailed study on the photochemical transformation of MF in aqueous solution under irradiation (at λ > 290 nm using a high pressure mercury lamp). MF was relatively photo-reactive showing a low polychromatic quantum yield of photolysis (1.06 × 10-4, 20 µM) counterbalanced by a significant light absorption above 290 nm. A series of photoproducts were identified by high resolution mass spectrometry (HR-MS) analysis, and three different pathways, including oxidation of the methyl group, debromination and replacement of bromine by hydroxyl group were proposed. Among them, debromination was identified as the dominating process that could be achieved via homolytic C-Br bond cleavage from singlet and triplet MF, as confirmed by laser flash photolysis (LFP) experiments and density functional theory (DFT) calculations. Toxicity assessment revealed that photochemical degradation reduced the ecotoxicity of MF efficiently. Nitrate ions and humic acid promoted the MF photolysis, while bicarbonate exhibited no effect. Results obtained in this work would increase our understanding on the environmental fate of MF in sunlit surface waters.


Asunto(s)
Fungicidas Industriales , Contaminantes Químicos del Agua , Benzofenonas , Bromo , Carbono , Cinética , Fotólisis , Contaminantes Químicos del Agua/análisis
16.
Opt Express ; 29(15): 23073-23082, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614579

RESUMEN

Microsphere lens for nano-imaging has been widely studied because of its superior resolving power, real-time imaging characteristic, and wide applicability on diverse samples. However, the further development of the microsphere microscope has been restricted by its limited magnification and small field-of-view. In this paper, the microsphere compound lenses (MCL) which allow enlarged magnification and field-of-view simultaneously in non-contact imaging mode have been demonstrated. A theoretical model involving wave-optics effects is established to guide the design of MCL for different magnifications and imaging configurations, which is more precise compared with common geometric optics theory. Experimentally, using MCL to image the specimen with a tunable magnification from 2.8× to 10.3× is realized. Due to the enlarged magnification, a high-resolution target with 137 nm line width can be resolved by a 10× objective. Besides, the field-of-view of MCL is larger than that of a single microsphere and can be further increased through scanning working manner, which has been demonstrated by imaging a sample with ∼76 nm minimum feature size in a large area. Prospectively, the well-designed MCL will become irreplaceable components to improve the imaging performances of microsphere microscope just like the compound lens in the conventional macroscopic imaging system.

17.
Light Sci Appl ; 10(1): 185, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521816
18.
Light Sci Appl ; 10(1): 162, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354041

RESUMEN

Laser has been demonstrated to be a mature and versatile tool that presents great flexibility and applicability for the precision engineering of a wide range of materials over other established micromachining techniques. Past decades have witnessed its rapid development and extensive applications ranging from scientific researches to industrial manufacturing. Transparent hard materials remain several major technical challenges for conventional laser processing techniques due to their high hardness, great brittleness, and low optical absorption. A variety of hybrid laser processing technologies, such as laser-induced plasma-assisted ablation, laser-induced backside wet etching, and etching assisted laser micromachining, have been developed to overcome these barriers by introducing additional medium assistance or combining different process steps. This article reviews the basic principles and characteristics of these hybrid technologies. How these technologies are used to precisely process transparent hard materials and their recent advancements are introduced. These hybrid technologies show remarkable benefits in terms of efficiency, accuracy, and quality for the fabrication of microstructures and functional devices on the surface of or inside the transparent hard substrates, thus enabling widespread applications in the fields of microelectronics, bio-medicine, photonics, and microfluidics. A summary and outlook of the hybrid laser technologies are also highlighted.

19.
Opt Lett ; 46(15): 3801-3804, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329285

RESUMEN

A method to realize surface-enhanced Raman spectroscopy (SERS) at a titanium alloy substrate for glucose detection has been experimentally demonstrated. A silver-coated laser-induced periodic surface structure (LIPSS) was prepared via femtosecond laser micro-processing. The low detection limit of glucose is 10-7mol/L and, a good linear relationship between the glucose concentration and Raman intensity is found in the range between 1×10-7 and 1×10-3mol/L. Moreover, we investigate SERS detection for glucose sensing in human urine samples, while the results are in good agreement with clinical results. The Letter provides a facile method for producing a structure-controlled SERS substrate to realize glucose detection, which is promising for long-term in vivo diagnostics.


Asunto(s)
Diabetes Mellitus , Nanopartículas del Metal , Diabetes Mellitus/diagnóstico , Humanos , Límite de Detección , Plata , Espectrometría Raman , Titanio
20.
Appl Opt ; 60(17): 5271-5277, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34143098

RESUMEN

A new technique, to the best of our knowledge, for improving the axial resolution and imaging contrast of a reflection mode confocal microscope is proposed. A 50 µm silica microsphere is added in front of the objective lens to enhance both the focusing of illumination and the collection of reflected and scattered light from sample surfaces in noncontact mode. An adjustable pinhole is used to compensate the displacement of the focal point in the axial direction. Various samples, including grouped nanolines and nanosteps, are used to demonstrate imaging performance. By comparison to an NA 0.9 commercial confocal microscope, the new setup achieves the axial resolution up to 100 nm and increases the image contrast by 4.56 times. The entire setup offers a cost-effective solution for high imaging performance, which can be applied in many fields from nanotechnology to biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...