Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458017

RESUMEN

Beyond the macroscopic perspective, this study microscopically investigates Si1-xGex(001)-2×1 samples that were grown on the epi Ge(001) and epi Si(001) substrates via molecular-beam epitaxy, using the high-resolution synchrotron radiation photoelectron spectroscopy (SRPES) as a probe. The low-energy electron diffraction equipped in the SRPES chamber showed 2×1 double-domain reconstruction. Analyses of the Ge 3d core-level spectra acquired using different photon energies and emission angles consistently reveal the ordered spots to be in a Ge-Ge tilted configuration, which is similar to that in epi Ge(001)-2×1. It was further found that the subsurface layer was actually dominated by Ge, which supported the buckled configuration. The Si atoms were first found in the third surface layer. These Si atoms were further divided into two parts, one underneath the Ge-Ge dimer and one between the dimer row. The distinct energy positions of the Si 2p core-level spectrum were caused by stresses, not by charge alternations.

2.
ACS Nano ; 16(2): 2369-2380, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35099945

RESUMEN

To realize the quantum anomalous Hall effect (QAHE) at elevated temperatures, the approach of magnetic proximity effect (MPE) was adopted to break the time-reversal symmetry in the topological insulator (Bi0.3Sb0.7)2Te3 (BST) based heterostructures with a ferrimagnetic insulator europium iron garnet (EuIG) of perpendicular magnetic anisotropy. Here we demonstrate large anomalous Hall resistance (RAHE) exceeding 8 Ω (ρAHE of 3.2 µΩ·cm) at 300 K and sustaining to 400 K in 35 BST/EuIG samples, surpassing the past record of 0.28 Ω (ρAHE of 0.14 µΩ·cm) at 300 K. The large RAHE is attributed to an atomically abrupt, Fe-rich interface between BST and EuIG. Importantly, the gate dependence of the AHE loops shows no sign change with varying chemical potential. This observation is supported by our first-principles calculations via applying a gradient Zeeman field plus a contact potential on BST. Our calculations further demonstrate that the AHE in this heterostructure is attributed to the intrinsic Berry curvature. Furthermore, for gate-biased 4 nm BST on EuIG, a pronounced topological Hall effect-like (THE-like) feature coexisting with AHE is observed at the negative top-gate voltage up to 15 K. Interface tuning with theoretical calculations has realized topologically distinct phenomena in tailored magnetic TI-based heterostructures.

3.
Nanomaterials (Basel) ; 10(8)2020 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-32748811

RESUMEN

The role of an atomic-layer thick periodic Y-O array in inducing the epitaxial growth of single-crystal hexagonal YAlO3 perovskite (H-YAP) films was studied using high-angle annular dark-field and annular bright-field scanning transmission electron microscopy in conjunction with a spherical aberration-corrected probe and in situ reflection high-energy electron diffraction. We observed the Y-O array at the interface of amorphous atomic layer deposition (ALD) sub-nano-laminated (snl) Al2O3/Y2O3 multilayers and GaAs(111)A, with the first film deposition being three cycles of ALD-Y2O3. This thin array was a seed layer for growing the H-YAP from the ALD snl multilayers with 900 °C rapid thermal annealing (RTA). The annealed film only contained H-YAP with an excellent crystallinity and an atomically sharp interface with the substrate. The initial Y-O array became the bottom layer of H-YAP, bonding with Ga, the top layer of GaAs. Using a similar ALD snl multilayer, but with the first film deposition of three ALD-Al2O3 cycles, there was no observation of a periodic atomic array at the interface. RTA of the sample to 900 °C resulted in a non-uniform film, mixing amorphous regions and island-like H-YAP domains. The results indicate that the epitaxial H-YAP was induced from the atomic-layer thick periodic Y-O array, rather than from GaAs(111)A.

4.
Nanomaterials (Basel) ; 9(4)2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987390

RESUMEN

In this paper, we investigate the embryonic stage of oxidation of an epi Ge(001)-2 × 1 by atomic oxygen and molecular O2 via synchrotron radiation photoemission. The topmost buckled surface with the up- and down-dimer atoms, and the first subsurface layer behaves distinctly from the bulk by exhibiting surface core-level shifts in the Ge 3d core-level spectrum. The O2 molecules become dissociated upon reaching the epi Ge(001)-2 × 1 surface. One of the O atoms removes the up-dimer atom and the other bonds with the underneath Ge atom in the subsurface layer. Atomic oxygen preferentially adsorbed on the epi Ge(001)-2 ×1 in between the up-dimer atoms and the underneath subsurface atoms, without affecting the down-dimer atoms. The electronic environment of the O-affiliated Ge up-dimer atoms becomes similar to that of the down-dimer atoms. They both exhibit an enrichment in charge, where the subsurface of the Ge layer is maintained in a charge-deficient state. The dipole moment that was originally generated in the buckled reconstruction no longer exists, thereby resulting in a decrease in the ionization potential. The down-dimer Ge atoms and the back-bonded subsurface atoms remain inert to atomic O and molecular O2, which might account for the low reliability in the Ge-related metal-oxide-semiconductor (MOS) devices.

5.
ACS Omega ; 3(2): 2111-2118, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31458518

RESUMEN

Y2O3 was in situ deposited on a freshly grown molecular beam epitaxy GaAs(001)-4 × 6 surface by atomic layer deposition (ALD). In situ synchrotron radiation photoemission was used to study the mechanism of the tris(ethylcyclopentadienyl)yttrium [Y(CpEt)3] and H2O process. The exponential attenuation of Ga 3d photoelectrons confirmed the laminar growth of ALD-Y2O3. In the embryo stage of the first ALD half-cycle with only Y(CpEt)3, the precursors reside on the faulted As atoms and undergo a charge transfer to the bonded As atoms. The subsequent ALD half-cycle of H2O molecules removes the bonded As atoms, and the oxygen atoms bond with the underneath Ga atoms. The product of a line of Ga-O-Y bonds stabilizes the Y2O3 films on the GaAs substrate. The resulting coordinatively unsaturated Y-O pairs of Y2O3 open the next ALD series. The absence of Ga2O3, As2O3, and As2O5 states may play an important role in the attainment of low interfacial trap densities (D it) of <1012 cm-2 eV-1 in our established reports.

6.
Nanoscale Res Lett ; 8(1): 169, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23587341

RESUMEN

High-resolution synchrotron radiation photoemission was employed to study the effects of atomic-layer-deposited trimethylaluminum (TMA) and water on Ga-rich GaAs(001)-4 × 6 and As-rich GaAs(001)-2 × 4 surfaces. No high charge states were found in either As 3d or Ga 3d core-level spectra before and after the deposition of the precursors. TMA adsorption does not disrupt the GaAs surface structure. For the (4 × 6) surface, the TMA precursor existed in both chemisorbed and physisorbed forms. In the former, TMA has lost a methyl group and is bonded to the As of the As-Ga dimer. Upon water purge, the dimethylaluminum-As group was etched off, allowing the now exposed Ga to bond with oxygen. Water also changed the physisorbed TMA into the As-O-Al(CH3)2 configuration. This configuration was also found in 1 cycle of TMA and water exposure of the (2 × 4) surface, but with a greater strength, accounting for the high interface defect density in the mid-gap region.

7.
ACS Appl Mater Interfaces ; 5(4): 1436-41, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23360590

RESUMEN

High quality nanometer-thick Gd2O3 and Y2O3 (rare-earth oxide, R2O3) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R2O3 epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R2O3 layers have a hexagonal phase with the epitaxial relationship of R2O3 (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R2O3 film thickness, the structure of the R2O3 films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R2O3 (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd2O3 films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

8.
Adv Mater ; 21(48): 4970-4974, 2009 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25378271

RESUMEN

Hexagonal-phase single-crystal Gd2 O3 is deposited on GaN in a molecular beam epitaxy system. The dielectric constant is about twice that of its cubic counterpart when deposited on InGaAs or Si. The capacitive effective thickness of 0.5 nm in hexagonal Gd2 O3 is perhaps the lowest on GaN-metal-oxide-semiconductor devices. The heterostructure is thermo dynamically stable at high temperatures and exhibits low interfacial densities of states after high-temperature annealing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...