Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hepatology ; 79(2): 409-424, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505219

RESUMEN

BACKGROUND AND AIMS: NASH represents a severe stage of fatty liver disease characterized by hepatocyte injury, inflammation, and liver fibrosis. Myeloid-derived innate immune cells, such as macrophages and dendritic cells, play an important role in host defense and disease pathogenesis. Despite this, the nature of transcriptomic reprogramming of myeloid cells in NASH liver and its contribution to disease progression remain incompletely defined. APPROACH AND RESULTS: In this study, we performed bulk and single-cell RNA sequencing (sc-RNA seq) analysis to delineate the landscape of macrophage and dendritic cell transcriptomes in healthy and NASH livers. Our analysis uncovered cell type-specific patterns of transcriptomic reprogramming on diet-induced NASH. We identified brain-abundant membrane-attached signal protein 1 (Basp1) as a myeloid-enriched gene that is markedly induced in mouse and human NASH liver. Myeloid-specific inactivation of Basp1 attenuates the severity of diet-induced NASH pathologies, as shown by reduced hepatocyte injury and liver fibrosis in mice. Mechanistically, cultured macrophages lacking Basp1 exhibited a diminished response to pro-inflammatory stimuli, impaired NLRP3 inflammasome activation, and reduced cytokine secretion. CONCLUSIONS: Together, these findings uncover Basp1 as a critical regulator of myeloid inflammatory signaling that underlies NASH pathogenesis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Hepatocitos/metabolismo , Dieta , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
Mol Cell ; 80(3): 437-451.e6, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33157014

RESUMEN

Amino-acid-induced lysosomal mechanistic target of rapamycin complex 1 (mTORC1) localization through the Rag GTPases is a critical step for its activation by Rheb GTPase. However, how the mTORC1 interacts with Rheb on the lysosome remains elusive. We report that amino acids enhance the polyubiquitination of Rheb (Ub-Rheb), which shows a strong binding preference for mTORC1 and supports its activation, while the Ub-Rheb is subjected to subsequent degradation. Mechanistically, we identified ATXN3 as a Ub-Rheb deubiquitinase whose lysosomal localization is blocked by active Rag heterodimer in response to amino acid stimulation. Consistently, cells lacking functional Rag heterodimer on the lysosome accumulate Ub-Rheb, and blockade of its degradation instigates robust lysosomal mTORC1 localization and its activation without the Ragulator-Rag system. Thus, polyubiquitination of Rheb is an important post-translational modification, which facilitates the binding of mTORC1 to Rheb on the lysosome and is another crosstalk between the amino acid and growth factor signaling for mTORC1 activation.


Asunto(s)
Ataxina-3/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Aminoácidos/metabolismo , Animales , Ataxina-3/fisiología , Línea Celular , Enzimas Desubicuitinizantes/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica/fisiología , Proteína Homóloga de Ras Enriquecida en el Cerebro/fisiología , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Ubiquitinación
3.
Elife ; 62017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28650797

RESUMEN

The RNA binding protein, LARP1, has been proposed to function downstream of mTORC1 to regulate the translation of 5'TOP mRNAs such as those encoding ribosome proteins (RP). However, the roles of LARP1 in the translation of 5'TOP mRNAs are controversial and its regulatory roles in mTORC1-mediated translation remain unclear. Here we show that LARP1 is a direct substrate of mTORC1 and Akt/S6K1. Deep sequencing of LARP1-bound mRNAs reveal that non-phosphorylated LARP1 interacts with both 5' and 3'UTRs of RP mRNAs and inhibits their translation. Importantly, phosphorylation of LARP1 by mTORC1 and Akt/S6K1 dissociates it from 5'UTRs and relieves its inhibitory activity on RP mRNA translation. Concomitantly, phosphorylated LARP1 scaffolds mTORC1 on the 3'UTRs of translationally-competent RP mRNAs to facilitate mTORC1-dependent induction of translation initiation. Thus, in response to cellular mTOR activity, LARP1 serves as a phosphorylation-sensitive molecular switch for turning off or on RP mRNA translation and subsequent ribosome biogenesis.


Asunto(s)
Autoantígenos/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Quinasas S6 Ribosómicas 70-kDa , Antígeno SS-B
4.
J Biol Chem ; 289(19): 13132-41, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24652283

RESUMEN

p70 ribosomal S6 kinase (S6K1), a major substrate of the mammalian target of rapamycin (mTOR) kinase, regulates diverse cellular processes including protein synthesis, cell growth, and survival. Although it is well known that the activity of S6K1 is tightly coupled to its phosphorylation status, the regulation of S6K1 activity by other post-translational modifications such as acetylation has not been well understood. Here we show that the acetylation of the C-terminal region (CTR) of S6K1 blocks mTORC1-dependent Thr-389 phosphorylation, an essential phosphorylation site for S6K1 activity. The acetylation of the CTR of S6K1 is inhibited by the class III histone deacetylases, SIRT1 and SIRT2. An S6K1 mutant lacking acetylation sites in its CTR shows enhanced Thr-389 phosphorylation and kinase activity, whereas the acetylation-mimetic S6K1 mutant exhibits decreased Thr-389 phosphorylation and kinase activity. Interestingly, relative to the acetylation-mimetic S6K1 mutant, the acetylation-defective mutant displays higher affinity toward Raptor, an essential scaffolding component of mTORC1 that recruits mTORC1 substrates. These observations indicate that sirtuin-mediated regulation of S6K1 acetylation is an additional important regulatory modification that impinges on the mechanisms underlying mTORC1-dependent S6K1 activation.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología , Sirtuina 1/metabolismo , Sirtuina 2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Acetilación , Animales , Células COS , Chlorocebus aethiops , Activación Enzimática/fisiología , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Mutación , Fosforilación/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Sirtuina 1/genética , Sirtuina 2/genética , Serina-Treonina Quinasas TOR/genética
5.
Methods Mol Biol ; 821: 29-44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22125058

RESUMEN

mTOR, an evolutionarily conserved Ser/Thr protein kinase, belongs to the PI3K-related kinase family, which also includes DNA-PKcs, ATM, and ATR. Although other PI3K-related kinase family members have been shown to secure genomic integrity by sensing DNA damage and related stresses, mTOR is known to function as a nutrient and growth factor sensor. mTOR is the catalytic subunit of two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). In response to growth factor and nutrient availability, these complexes regulate a variety of cellular processes, such as cell growth, proliferation, and survival by modulating downstream effectors, such as S6K1, 4EBP1, and AKT. Therefore, evaluation of mTOR activity has been a clear readout in order to monitor the physiological status of cells in response to environmental cues. Here, we present the current techniques for the assessment of mTOR kinase activity in different experimental settings.


Asunto(s)
Técnicas Inmunológicas , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Anticuerpos/inmunología , Técnicas de Cultivo de Célula , Daño del ADN/genética , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Proteínas/análisis , Transducción de Señal , Serina-Treonina Quinasas TOR , Factores de Transcripción/análisis
6.
J Biol Chem ; 286(37): 32651-60, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21784859

RESUMEN

Mammalian target of rapamycin (mTOR) is a kinase that plays a key role in a wide array of cellular processes and exists in two distinct functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although mTORC2 is primarily activated by growth factors, mTORC1 is regulated by numerous extracellular and intracellular signals such as nutrients, growth factors, and cellular redox. Previous study has shown that cysteine oxidants sufficiently activate mTORC1 activity under amino acid-depleted conditions and that a reducing agent effectively suppresses amino acid-induced mTORC1 activity, thereby raising the possibility that redox-sensitive mechanisms underlie amino acid-dependent mTORC1 regulation. However, the molecular mechanism by which redox regulates mTORC1 activity is not well understood. In this study, we show that the redox-sensitive regulation of mTORC1 occurs via Rheb but not the Rag small GTPase. Enhancing cellular redox potential with cysteine oxidants significantly increases Rheb GTP levels. Importantly, modulation of the cellular redox potential with a cysteine oxidant or reducing agent failed to alter mTORC1 activity in TSC1(-/-) or TSC2(-/-) mouse embryonic fibroblast cells. Furthermore, a cysteine oxidant has little effect on mTOR localization but sufficiently activates mTORC1 activity in both p18(-/-) and control mouse embryonic fibroblast cells, suggesting that the redox-sensitive regulation of mTORC1 occurs independent of the Ragulator·Rag complex. Taken together, our results suggest that the TSC complex plays an important role in redox-sensitive mTORC1 regulation and argues for the activation of mTORC1 in places other than the lysosome upon inhibition of the TSC complex.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Proteínas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos , Neuropéptidos/genética , Oxidación-Reducción , Transporte de Proteínas/fisiología , Proteínas/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
7.
J Clin Invest ; 121(6): 2181-96, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21606597

RESUMEN

Diabetic nephropathy (DN) is among the most lethal complications that occur in type 1 and type 2 diabetics. Podocyte dysfunction is postulated to be a critical event associated with proteinuria and glomerulosclerosis in glomerular diseases including DN. However, molecular mechanisms of podocyte dysfunction in the development of DN are not well understood. Here we have shown that activity of mTOR complex 1 (mTORC1), a kinase that senses nutrient availability, was enhanced in the podocytes of diabetic animals. Further, podocyte-specific mTORC1 activation induced by ablation of an upstream negative regulator (PcKOTsc1) recapitulated many DN features, including podocyte loss, glomerular basement membrane thickening, mesangial expansion, and proteinuria in nondiabetic young and adult mice. Abnormal mTORC1 activation caused mislocalization of slit diaphragm proteins and induced an epithelial-mesenchymal transition-like phenotypic switch with enhanced ER stress in podocytes. Conversely, reduction of ER stress with a chemical chaperone significantly protected against both the podocyte phenotypic switch and podocyte loss in PcKOTsc1 mice. Finally, genetic reduction of podocyte-specific mTORC1 in diabetic animals suppressed the development of DN. These results indicate that mTORC1 activation in podocytes is a critical event in inducing DN and suggest that reduction of podocyte mTORC1 activity is a potential therapeutic strategy to prevent DN.


Asunto(s)
Nefropatías Diabéticas/etiología , Podocitos/enzimología , Proteínas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Diferenciación Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Activación Enzimática , Membrana Basal Glomerular/patología , Mesangio Glomerular/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Complejos Multiproteicos , Fosforilación , Podocitos/efectos de los fármacos , Podocitos/patología , Podocitos/fisiología , Procesamiento Proteico-Postraduccional , Proteínas/antagonistas & inhibidores , Proteína Reguladora Asociada a mTOR , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
8.
Science ; 332(6032): 966-70, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21512002

RESUMEN

Protein synthesis and autophagic degradation are regulated in an opposite manner by mammalian target of rapamycin (mTOR), whereas under certain conditions it would be beneficial if they occurred in unison to handle rapid protein turnover. We observed a distinct cellular compartment at the trans side of the Golgi apparatus, the TOR-autophagy spatial coupling compartment (TASCC), where (auto)lysosomes and mTOR accumulated during Ras-induced senescence. mTOR recruitment to the TASCC was amino acid- and Rag guanosine triphosphatase-dependent, and disruption of mTOR localization to the TASCC suppressed interleukin-6/8 synthesis. TASCC formation was observed during macrophage differentiation and in glomerular podocytes; both displayed increased protein secretion. The spatial coupling of cells' catabolic and anabolic machinery could augment their respective functions and facilitate the mass synthesis of secretory proteins.


Asunto(s)
Autofagia , Senescencia Celular , Vesículas Citoplasmáticas/metabolismo , Proteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aminoácidos/metabolismo , Animales , Línea Celular , Citoplasma/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Retículo Endoplásmico Rugoso/ultraestructura , Genes ras , Aparato de Golgi/ultraestructura , Células HL-60 , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Nocodazol/farmacología , Fagosomas/metabolismo , Fagosomas/ultraestructura , Fenotipo , Podocitos/metabolismo , Podocitos/ultraestructura , Biosíntesis de Proteínas , Vacuolas/ultraestructura , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
9.
Methods Enzymol ; 452: 165-80, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19200882

RESUMEN

Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine protein kinase implicated in a wide array of cellular processes such as cell growth, proliferation, and survival. Analogous to the situation in yeast, mTOR forms two distinct functional complexes termed mTOR complex 1 and 2 (mTORC1 and mTORC2). mTORC1 activity is inhibited by rapamycin, a specific inhibitor of mTOR, whereas mTORC2 activity is resistant to short-term treatments with rapamycin. In response to growth factors, mTORC2 phosphorylates Akt, an essential kinase involved in cell survival. On the other hand, mTORC1 can be activated by both growth factors and nutrients such as glucose and amino acids. In turn, mTORC1 regulates the activity of the translational machinery by modulating S6 kinase (S6K) activity and eIF4E binding protein 1 (4E-BP1) through direct phosphorylation. Consequently, protein synthesis and cell growth are stimulated in a variety of different cell types. In addition, mTORC1 inhibits autophagy, an essential protein degradation and recycling system, which cells employ to sustain their viability in times of limited availability of nutrients. Recent studies have highlighted the fact that autophagy plays crucial roles in many aspects of human health including cancer development, neurodegenerative disease, diabetes, and aging. It is likely that dysregulation of the mTOR-autophagy pathway may contribute at least in part to these human disorders. Therefore, the assessment of mTOR activity is important to understand the status of autophagy in the cells being analyzed and its role in autophagy-related disorders. In this section, we describe methods to monitor mTOR activity both in vitro and in vivo.


Asunto(s)
Proteínas Quinasas/metabolismo , Autofagia/fisiología , Línea Celular , Humanos , Inmunohistoquímica , Técnicas In Vitro , Serina-Treonina Quinasas TOR
10.
Cell Cycle ; 7(3): 391-400, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18235226

RESUMEN

Deregulation of the Rb-E2F pathway occurs in many cancers and results in aberrant cell proliferation as well as an increased propensity to undergo apoptosis. In most cases, apoptosis in response to Rb inactivation involves the activation of p53 but the molecular details of the signaling pathway connecting Rb loss to p53 are poorly understood. Here we demonstrate that the E1A oncoprotein, which binds and inhibits Rb family members, induces the accumulation and phosphorylation of p53 through the DNA damage-responsive ATM kinase. As a result, E1A-induced apoptosis is significantly impaired in cells lacking ATM. In contrast, inactivation of ARF, which is widely believed to activate p53 in response to oncogenic stress, has no effect on p53 induction and only a modest effect on apoptosis in response to E1A. Both E2F1 and E2F3 contribute to ATM-dependent phosphorylation of p53 and apoptosis in cells expressing E1A. However, deregulated E2F3 activity is implicated in the DNA damage caused by E1A while E2F1 stimulates ATM- and NBS1-dependent p53 phosphorylation and apoptosis through a mechanism that does not involve DNA damage.


Asunto(s)
Proteínas E1A de Adenovirus/fisiología , Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción E2F1/fisiología , Factor de Transcripción E2F3/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Animales , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada , Células Cultivadas , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F3/metabolismo , Activación Enzimática/fisiología , Humanos , Ratones
11.
Cell Cycle ; 5(8): 801-3, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16582589

RESUMEN

Activation of the ATM DNA damage response pathway is commonly observed in a variety of early-stage neoplasias. It has been proposed that this checkpoint response functions to suppress the development of cancer. A recent report from our laboratory demonstrates that ATM does indeed function to suppress tumorigenesis by responding to at least some oncogenic stresses. Transgenic expression of Myc is found to cause DNA damage in vivo and ATM is shown to respond to this damage by inducing the accumulation and phosphorylation of p53. In the absence of ATM, p53-dependent apoptosis is reduced and epithelial tumorigenesis is accelerated in Myc transgenic mice. Deregulated expression of the E2F1 transcription factor also elicits an ATM-dependent checkpoint response that activates p53 and promotes apoptosis, although the mechanism by which E2F1 and Myc stimulate ATM may differ. These findings have relevance for understanding why the ATM pathway is activated in many human cancers, what generates the selective pressure for p53 inactivation during tumorigenesis, and why AT patients and carriers are predisposed to developing cancer.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción E2F1/fisiología , Oncogenes , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/fisiología , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/metabolismo
12.
Proc Natl Acad Sci U S A ; 103(5): 1446-51, 2006 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-16432227

RESUMEN

Overexpression of the c-myc oncogene contributes to the development of a significant number of human cancers. In response to deregulated Myc activity, the p53 tumor suppressor is activated to promote apoptosis and inhibit tumor formation. Here we demonstrate that p53 induction in response to Myc overexpression requires the ataxia-telangiectasia mutated (ATM) kinase, a major regulator of the cellular response to DNA double-strand breaks. In a transgenic mouse model overexpressing Myc in squamous epithelial tissues, inactivation of Atm suppresses apoptosis and accelerates tumorigenesis. Deregulated Myc expression induces DNA damage in primary transgenic keratinocytes and the formation of gammaH2AX and phospho-SMC1 foci in transgenic tissue. These findings suggest that Myc overexpression causes DNA damage in vivo and that the ATM-dependent response to this damage is critical for p53 activation, apoptosis, and the suppression of tumor development.


Asunto(s)
Apoptosis , Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Supresoras de Tumor/fisiología , Animales , Ataxia Telangiectasia/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Caspasa 3 , Caspasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Ensayo Cometa , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Femenino , Fibroblastos/metabolismo , Genotipo , Histonas/química , Humanos , Immunoblotting , Inmunohistoquímica , Queratinocitos/citología , Queratinocitos/metabolismo , Linfoma/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Neoplasias/metabolismo , Oncogenes , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Timo/patología , Factores de Tiempo , Proteínas Supresoras de Tumor/metabolismo
13.
Mol Cancer Res ; 2(4): 203-14, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15140942

RESUMEN

The p53 tumor suppressor protein is phosphorylated and activated by several DNA damage-inducible kinases, such as ATM, and is a key effector of the DNA damage response by promoting cell cycle arrest or apoptosis. Deregulation of the Rb-E2F1 pathway also results in the activation of p53 and the promotion of apoptosis, and this contributes to the suppression of tumor development. Here, we describe a novel connection between E2F1 and the ATM DNA damage response pathway. In primary human fibroblasts lacking functional ATM, the ability of E2F1 to induce the phosphorylation of p53 and apoptosis is impaired. In contrast, ATM status has no effect on transcriptional activation of target genes or the stimulation of DNA synthesis by E2F1. Cells containing mutant Nijmegen breakage syndrome protein (NBS1), a component of the Mre11-Rad50 DNA repair complex, also have attenuated p53 phosphorylation and apoptosis in response to E2F1 expression. Moreover, E2F1 induces ATM- and NBS1-dependent phosphorylation of the checkpoint kinase Chk2 at Thr68, a phosphorylation site that stimulates Chk2 activity. Delayed gammaH2AX phosphorylation and absence of ATM autophosphorylation at Ser1981 suggest that E2F1 stimulates ATM through a unique mechanism that is distinct from agents that cause DNA double-strand breaks. These findings identify new roles for several DNA damage response factors by demonstrating that they also participate in the oncogenic stress signaling pathway between E2F1 and p53.


Asunto(s)
Apoptosis , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada , Cafeína/farmacología , Proteínas de Ciclo Celular/genética , Células Cultivadas , Quinasa de Punto de Control 2 , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Histonas/metabolismo , Humanos , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transfección , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...