Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(8): e18395, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600423

RESUMEN

Objective: To explore the influence of disease and genetic factors on the white matter microstructure in patients with PD. The white matter microstructural changes in the substantia nigra-striatum system were detected by diffusion tensor imaging (DTI) using the region of interest (ROI) and diffusion tensor tracer (DTT) methods. Methods: Patients with primary Parkinson's disease (PD) without a family history of PD were selected and divided into PD-G/G and PD-G/A groups according to their parkin S/N167 polymorphism. Control groups matched for age, sex, and gene type (G/G and G/A) were also included. Three-dimensional brain volume imaging (3D-BRAVO) and DTI were performed. The microstructural changes in the substantia nigra-striatum system were evaluated by the ROI and DTT methods. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Hoehn-Yahr (H-Y) staging, and the third part of the Unified Parkinson's Disease Rating (UPDRS-III) scales evaluated the cognitive and motor function impairment in patients with PD. Independent samples t-test compared normally-distributed data, and the Wilcoxon rank sum test compared measurement or categorical non-normally distributed data. Multiple regression analysis was used to analyze the correlation between various DTI indicators and the MMSE, MoCA, UPDRS-III, and H-Y scores in the PD-G/G and PD-G/A groups. P < 0.05 was considered statistically significant. Results: The white matter microstructural changes in the nigrostriatal pathway differed significantly between the PD or PD-G/A and the control group (P < 0.05)The ROI method showed that the left globus pallidus radial diffusivity (RD) value was negatively correlated with the MMSE score (r = -0.404, P = 0.040), and the left substantia nigra (LSN) fractional anisotropy (FA) value was positively correlated with the MoCA score (r = 0.405, P = 0.040) and negatively with the H-Y stage (r = -0.479, P = 0.013).The DTT method showed that the MMSE score was positively correlated with the right substantia nigra (RSN) FA value (r = 0.592, P = 0.001) and negatively with its RD value (r = -0.439, P = 0.025). The H-Y grade was negatively correlated with the number of fibers in the RSN (r = -0.406, P = 0.040). The UPDRS-Ⅲ score was positively correlated with the mean diffusivity (r = 0.420, P = 0.033) and RD (r = 0.396, P = 0.045) values of the LSN, and the AD value of the RSN (r = 0.439, P = 0.025). Conclusion: The DTI technique detected extensive white matter fiber damage in patients with PD, primarily in those with the G/A genotype, that led to motor and cognitivesymptoms.

2.
Sci Rep ; 12(1): 12122, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840654

RESUMEN

Dendritic cells (DCs) are the antigen-presenting cells that initiate and direct adaptive immune responses, and thus are critically important in vaccine design. Although DC-targeting vaccines have attracted attention, relevant studies on chicken are rare. A high diversity T7 phage display nanobody library was constructed for bio-panning of intact chicken bone marrow DCs to find DC-specific binding nanobodies. After three rounds of screening, 46 unique sequence phage clones were identified from 125 randomly selected phage clones. Several DC-binding phage clones were selected using the specificity assay. Phage-54, -74, -16 and -121 bound not only with chicken DCs, but also with duck and goose DCs. In vitro, confocal microscopy observation demonstrated that phage-54 and phage-74 efficiently adsorbed onto DCs within 15 min compared to T7-wt. The pull-down assay, however, did not detect any of the previously reported proteins for chicken DCs that could have interacted with the nanobodies displayed on phage-54 and phage-74. Nonetheless, Specified pathogen-free chickens immunized with phage-54 and phage-74 displayed higher levels of anti-p10 antibody than the T7-wt, indicating enhanced antibody production by nanobody mediated-DC targeting. Therefore, this study identified two avian (chicken, duck and goose) DC-specific binding nanobodies, which may be used for the development of DC-targeting vaccines.


Asunto(s)
Bacteriófagos , Anticuerpos de Dominio Único , Animales , Bacteriófago T7/genética , Bacteriófagos/genética , Pollos , Células Dendríticas , Biblioteca de Péptidos
3.
Viruses ; 14(3)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35337040

RESUMEN

Duck viral hepatitis type I (DVH I) is a lethal disease in ducklings caused by duck hepatitis A virus (DHAV). Although the commercial vaccine is available for vaccination of one-day-old ducklings or breeder ducks, the disease is still prevalent due to the delayed immune response in ducklings and variable maternal antibody levels in breeder duck flocks. To explore the feasibility of duck interferon-α (DuIFN-α) for control of DVH I, DuIFN-α was expressed as an elastin-like polypeptide (ELP) fusion protein (ELP-DuIFN-α) in E. coli and purified by inverse phase transition cycling (ITC). After detection of its cytotoxicity, bioactivity, plasma stability and serum half-life, the protective efficacy of ELP-DuIFN-α against DHAV-1 infection of embryos or ducklings was evaluated using different treatment routes at different infection times. The results show that ELP-DuIFN-α was correctly expressed and purified to more than 90% purity after two cycles of ITC. The purified fusion protein had a specific anti-DHAV-1 activity of 6.0 × 104 IU/mg protein, significantly extended plasma stability and serum half-life without overt cytotoxicity. After allantoic injection with ELP-DuIFN-α pre-infection, co-infection or post-infection with DHAV-1, 5/5, 5/5 or 4/5 embryos survived from the virus challenge. After intramuscular injection or oral administration with ELP-DuIFN-α, 3/5 or 4/5 ducklings survived from co-infection with DHAV-1. After oral administration with ELP-DuIFN-α pre-infection, co-infection or post-infection with DHAV-1, 3/5, 4/5 or 4/5 ducklings survived from the virus challenge, and the relative transcription levels of interferon-stimulated genes were significantly higher than the normal control group and virus challenge control group (p < 0.01). These experimental data suggest that ELP-DuIFN-α can be used as a long-lasting anti-DHAV-1 reagent.


Asunto(s)
Coinfección , Virus de la Hepatitis A , Hepatitis A , Virus de la Hepatitis del Pato , Hepatitis Viral Animal , Infecciones por Picornaviridae , Enfermedades de las Aves de Corral , Animales , Patos , Escherichia coli , Virus de la Hepatitis del Pato/genética , Hepatitis Viral Animal/prevención & control , Interferón-alfa , Infecciones por Picornaviridae/prevención & control , Infecciones por Picornaviridae/veterinaria
4.
Front Microbiol ; 12: 705310, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408735

RESUMEN

Bacteriophage T7 gene 17.5 coding for the only known holin is one of the components of its lysis system, but the holin activity in T7 is more complex than a single gene, and evidence points to the existence of additional T7 genes with holin activity. In this study, a T7 phage with a gene 17.5 deletion (T7-△holin) was rescued and its biological characteristics and effect on cell lysis were determined. Furthermore, the genomic evolution of mutant phage T7-△holin during serial passage was assessed by whole-genome sequencing analysis. It was observed that deletion of gene 17.5 from phage T7 delays lysis time and enlarges the phage burst size; however, this biological characteristic recovered to normal lysis levels during serial passage. Scanning electron microscopy showed that the two opposite ends of E. coli BL21 cells swell post-T7-△holin infection rather than drilling holes on cell membrane when compared with T7 wild-type infection. No visible progeny phage particle accumulation was observed inside the E. coli BL21 cells by transmission electron microscopy. Following serial passage of T7-△holin from the 1st to 20th generations, the mRNA levels of gene 3.5 and gene 19.5 were upregulated and several mutation sites were discovered, especially two missense mutations in gene 19.5, which indicate a potential contribution to the evolution of the T7-△holin. Although the burst size of T7-△holin increased, high titer cultivation of T7-△holin was not achieved by optimizing the culture process. Accordingly, these results suggest that gene 19.5 is a potential lysis-related component that needs to be studied further and that the T7-△holin strain with its gene 17.5 deletion is not adequate to establish the high-titer phage cultivation process.

5.
Comp Immunol Microbiol Infect Dis ; 71: 101499, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32505765

RESUMEN

There has been an increasing interest in finding new formulations that qualify as vaccine adjuvants, which must be safe, stable, and have the capacity to stimulate a strong immune response. In this study, a basic formulation of a water-in-oil-in-water (W/O/W) adjuvant CV13 was developed, and ginseng stem-leaf saponins (GSLS) were added as an immune booster into oil phase. The physicochemical properties of the adjuvant were tested. Furthermore, the immune activity and the adjuvant effects, as indicated by the foot-and-mouth disease virus (FMDV) antigen were evaluated. The results showed that CV13 was similar in appearance to ISA 206 and could package FMDV antigen into a stable W/O/W emulsion. The FMD vaccine prepared with CV13 alone or CV13 containing GSLS achieved pharmaceutical characteristics comparable to a vaccine prepared with ISA 206, moreover the structural stability of the CV 13 vaccine was found to be better. Mice that were immunized with the FMD vaccine prepared with CV13 containing GSLS presented a significantly higher LPBE antibody titer and splenocyte proliferation rate than those immunized with a vaccine prepared with CV13 alone (p < 0.05). In addition, there was no significant difference between the groups that were immunized with FMD vaccine prepared with CV13 containing GSLS and ISA206 in terms of cellular and humoral immune response. In this paper, CV13 containing GSLS shows excellent immunologic adjuvant effect in mice model, and this new adjuvant may provide a potential choice for FMD vaccine production in the future.

6.
J Virol Methods ; 248: 172-176, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28728835

RESUMEN

In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 102 copies/µl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks.


Asunto(s)
Patos/virología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Enfermedades de las Aves de Corral/virología , Virosis/veterinaria , Virus/aislamiento & purificación , Animales , Virus de la Hepatitis del Pato/genética , Virus de la Hepatitis del Pato/aislamiento & purificación , Hepatitis Viral Animal/diagnóstico , Hepatitis Viral Animal/virología , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Enfermedades de las Aves de Corral/diagnóstico , Sensibilidad y Especificidad , Virosis/diagnóstico , Virosis/virología , Virus/genética
7.
J Virol Methods ; 240: 26-31, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27867046

RESUMEN

Recombinant avian adeno-associated virus (rAAAV) is a promising gene transfer vector for avian cells. Although rAAAV can be produced by co-transfection of HEK293 cells with three plasmids, both scalability and productivity of the transient transfection method can not meet the demand for large-scale in vivo experiments. In this study, a scalable rAAAV production method was established by using insect cell/baculovirus expression system. Three recombinant baculoviruses, namely BacARep, BacAVP and BacAGFP, were generated by transfection of Sf9 cells with the three plasmids expressing AAAV Rep genes, modified VP gene or the inverted terminal repeats-flanked green fluorescent protein (GFP) gene. After demonstration of the correct expression of AAAV genes, rAAAV-GFP was produced by triple infection of insect cells or triple transfection of HEK293 cells for comparison purpose. Electron microscopy revealed the formation of typical AAAV particles in the insect cells. Western blotting showed the correct assembly of rAAAV particles with a VP protein ratio similar to that of AAAV. Quantitative PCR showed that the insect cell-produced rAAAV yield was almost 25-fold higher than that produced by HEK293 cells. Fluorescent microscopy showed that the insect cell-produced rAAAV could transfer GFP reporter gene into two avian cell types with similar transfer efficiency to that of HEK293 cell-produced rAAAV. These data suggest that insect cell/baculovirus expression system could be used for scalable production of rAAAV, and the viral vector produced could be used as the gene transfer vehicle for avian cells.


Asunto(s)
Baculoviridae/genética , Dependovirus/genética , Expresión Génica , Vectores Genéticos , Animales , Línea Celular , Embrión de Pollo , Dependovirus/aislamiento & purificación , Dependovirus/fisiología , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Microscopía Fluorescente/métodos , Plásmidos/genética , Células Sf9 , Spodoptera , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...