Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(18): 7145-7154, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38656793

RESUMEN

Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.


Asunto(s)
COVID-19 , Centrifugación , SARS-CoV-2 , Inmunoensayo/métodos , Inmunoensayo/instrumentación , SARS-CoV-2/aislamiento & purificación , Centrifugación/instrumentación , COVID-19/diagnóstico , COVID-19/virología , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Dispositivos Laboratorio en un Chip
2.
Anal Bioanal Chem ; 415(22): 5311-5322, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392212

RESUMEN

Droplet microfluidics is a rapidly advancing area of microfluidic technology, which offers numerous advantages for cell analysis, such as isolation and accumulation of signals, by confining cells within droplets. However, controlling cell numbers in droplets is challenging due to the uncertainty of random encapsulation which result in many empty droplets. Therefore, more precise control techniques are needed to achieve efficient encapsulation of cells within droplets. Here, an innovative microfluidic droplet manipulation platform had been developed, which employed positive pressure as a stable and controllable driving force for manipulating fluid within chips. The air cylinder, electro-pneumatics proportional valve, and the microfluidic chip were connected through a capillary, which enabled the formation of a fluid wall by creating a difference in hydrodynamic resistance between two fluid streams at the channel junction. Lowering the pressure of the driving oil phase eliminates hydrodynamic resistance and breaks the fluid wall. Regulating the duration of the fluid wall breakage controls the volume of the introduced fluid. Several important droplet microfluidic manipulations were demonstrated on this microfluidic platform, such as sorting of cells/droplets, sorting of droplets co-encapsulated cells and hydrogels, and active generation of droplets encapsulated with cells in a responsive manner. The simple, on-demand microfluidic platform was featured with high stability, good controllability, and compatibility with other droplet microfluidic technologies.

3.
Anal Chem ; 95(14): 6145-6155, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36996249

RESUMEN

Low-cost, rapid, and accurate acquisition of minimum inhibitory concentrations (MICs) is key to limiting the development of antimicrobial resistance (AMR). Until now, conventional antibiotic susceptibility testing (AST) methods are typically time-consuming, high-cost, and labor-intensive, making them difficult to accomplish this task. Herein, an electricity-free, portable, and robust handyfuge microfluidic chip was developed for on-site AST, termed handyfuge-AST. With simply handheld centrifugation, the bacterial-antibiotic mixtures with accurate antibiotic concentration gradients could be generated in less than 5 min. The accurate MIC values of single antibiotics (including ampicillin, kanamycin, and chloramphenicol) or their combinations against Escherichia coli could be obtained within 5 h. To further meet the growing demands of point-of-care testing, we upgraded our handyfuge-AST with a pH-based colorimetric strategy, enabling naked eye recognition or intelligent recognition with a homemade mobile app. Through a comparative study of 60 clinical data (10 clinical samples corresponding to six commonly used antibiotics), the accurate MICs by handyfuge-AST with 100% categorical agreements were achieved compared to clinical standard methods (area under curves, AUCs = 1.00). The handyfuge-AST could be used as a low-cost, portable, and robust point-of-care device to rapidly obtain accurate MIC values, which significantly limit the progress of AMR.


Asunto(s)
Antibacterianos , Microfluídica , Microfluídica/métodos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Escherichia coli , Ampicilina
4.
Biosens Bioelectron ; 206: 114130, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35245866

RESUMEN

Point-of-care testing (POCT) has shown great advantages for public health monitoring in resource-limited settings. However, developing of POCT tools with automated and accurate quantitative dispensing of multiple reagents and samples is challenging. Here, we demonstrate a novel multi-reagents dispensing centrifugal microfluidics (MDCM) that allows rapid and automated dispensing of multiple reagents and samples with high throughput and accuracy. The MDCM was designed with multiple aliquoting units with the hydrophobic valve at different radial positions. All reagents and samples were loaded simultaneously, dispensed in parallel by centrifugation at low speed, and then introduced into the reaction chamber sequentially by centrifugation at high speed. Two MDCM chips are demonstrated, including a uniform concentration generator and a gradient concentration generator. The concentration coefficient of variation (CV) among the independent reaction chambers was lower than 0.56%, and the theoretical quantitative concentration gradient was strongly correlated with the actual concentration gradient (R2 = 0.9938). We have successfully applied the MDCM to loop-mediated isothermal amplification (LAMP)-based nucleic acid detection for multiple infectious pathogens and antimicrobial susceptibility testing (AST) for kanamycin sulfate against E. coli. To further extend the applications, the MDCM has also been applied to bicinchoninic acid (BCA) protein assays with online calibration, reducing the detection time from 2 h to 10 min with a twenty-fold reduction in reagent consumption. These results indicated that the MDCM is a high potential platform for POCT.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Técnicas Biosensibles/métodos , Escherichia coli , Indicadores y Reactivos , Microfluídica/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pruebas en el Punto de Atención
5.
Mil Med Res ; 9(1): 11, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35300739

RESUMEN

Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing (POCT). Emerging microfluidics, a highly miniaturized, automatic, and integrated technology, are a potential substitute for traditional methods in performing rapid, low-cost, accurate, and on-site diagnoses. Molecular diagnostics are widely used in microfluidic devices as the most effective approaches for pathogen detection. This review summarizes the latest advances in microfluidics-based molecular diagnostics for infectious diseases from academic perspectives and industrial outlooks. First, we introduce the typical on-chip nucleic acid processes, including sample preprocessing, amplification, and signal read-out. Then, four categories of microfluidic platforms are compared with respect to features, merits, and demerits. We further discuss application of the digital assay in absolute nucleic acid quantification. Both the classic and recent microfluidics-based commercial molecular diagnostic devices are summarized as proof of the current market status. Finally, we propose future directions for microfluidics-based infectious disease diagnosis.


Asunto(s)
Enfermedades Transmisibles , Técnicas Analíticas Microfluídicas , Enfermedades Transmisibles/diagnóstico , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Patología Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA