Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(1): 1545-1553, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36576882

RESUMEN

High-precision piezo actuators necessitate dielectrics with high electrostrain performance with low hysteresis. Polarity-modulated (Sr0.7Bi0.2□0.1)TiO3-based ceramics exhibit extraordinarily discrete multiphase coexistence regions: (i) the relaxor phase coexistence (RPC) region with local weakly polar tetragonal (T) and pseudocubic (Pc) short-range polar nanodomains and (ii) the ferroelectric phase coexistence (FPC) region with T long-range domains and Pc nanodomains. The RPC composition features a specially high and pure electrostrain performance with near-zero hysteresis (S ∼ 0.185%, Q33 ∼ 0.038 m4·C-2), which is double those of conventional Pb(Mg1/3Nb2/3)O3-based ceramics. Particular interest is paid to the RPC and FPC with multiscale characterization to unravel local structure-performance relationships. Guided by piezoelectric force microscopy, scanning transmission electron microscopy, and phase-field simulations, the RPC composition with multiphase low-angle weakly polar nanodomains shows local structural heterogeneity and contributes to a flat local free energy profile and thus to nanodomain switching and superior electrostrain performance, in contrast to the FPC composition with a macroscopic domain that shows stark hysteresis. This work provides a paradigm to design high-precision actuator materials with large electrostrain and ultralow hysteresis, extending our knowledge of multiphase coexistence species in ferroelectrics.

2.
ACS Appl Mater Interfaces ; 14(39): 44389-44397, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36153962

RESUMEN

Dielectric capacitors possessing the inherent superiorities of high power density and ultrafast charge-discharge speed make their utilization in energy-storage devices extremely propitious, although the relatively low recoverable energy-storage density (Wrec) may impede their applications. In this work, unlike the mainstream approach of destroying long-range ferroelectric/antiferroelectric order and inducing relaxor properties to achieve a high Wrec value, we have selected end members with a high polarization gene to promote the polarization behavior of the typical relaxor Sr0.7Bi0.2TiO3. Therefore, an ultrahigh Wrec ∼ 8 J/cm3 and a superior efficiency (η) ∼ 91% are accomplished in the 0.98[0.56(Sr0.7Bi0.2)TiO3-0.44(Bi0.5Na0.5)TiO3]-0.02 Bi(Mg0.5Ti0.5)O3 sample. The achieved Wrec value is record high in Sr0.7Bi0.2TiO3-based systems as far as we know. The polarization-enhancement behavior can be explained by the phase field simulation results, phase content variance in X-ray diffraction Rietveld refinement, hardening trend in Raman spectroscopy, domain morphology, and local symmetry in transmission electron microscope analysis. Meanwhile, the ceramic possesses excellent thermal stability (ΔWrec < 12.7% and Δη < 10.4%, -50-200 °C), frequency (ΔWrec < 2.69% and Δη < 2.06%, 0.5-500 Hz), and fatigue-resistant stability (ΔWrec < 0.08% and Δη < 0.2%, up to 1 × 105 cycles). Accordingly, this work proposes a design idea to tailor the polarization behavior and energy-storage properties of typical relaxors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...