Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(4): 168421, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38158176

RESUMEN

Highly specialized cells, such as neurons and podocytes, have arborized morphologies that serve their specific functions. Actin cytoskeleton and its associated proteins are responsible for the distinctive shapes of cells. The mechanism of their cytoskeleton regulation - contributing to cell shape maintenance - is yet to be fully clarified. Inverted formin 2 (INF2), one of the modulators of the cytoskeleton, is an atypical formin that can both polymerize and depolymerize actin filaments depending on its molar ratio to actin. Prior work has established that INF2 binds to the sides of actin filaments and severs them. Drebrin is another actin-binding protein that also binds filaments laterally and stabilizes them, but the interplay between drebrin and INF2 on actin filament stabilization is not well understood. Here, we have used biochemical assays, electron microscopy, and total internal reflection fluorescence microscopy imaging to show that drebrin protects actin filaments from severing by INF2 without inhibiting its polymerization activity. Notably, truncated drebrin - DrbA1-300 - is sufficient for this protection, though not as effective as the full-length protein. INF2 and drebrin are abundantly expressed in highly specialized cells and are crucial for the temporal regulation of their actin cytoskeleton, consistent with their involvement in peripheral neuropathy.


Asunto(s)
Actinas , Forminas , Neuropéptidos , Citoesqueleto de Actina/química , Actinas/química , Forminas/química , Neuropéptidos/química , Extensiones de la Superficie Celular/química , Neuronas/metabolismo , Microscopía Electrónica
2.
Commun Biol ; 5(1): 1372, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517642

RESUMEN

Anion exchanger 1 (AE1, band 3) is a major membrane protein of red blood cells and plays a key role in acid-base homeostasis, urine acidification, red blood cell shape regulation, and removal of carbon dioxide during respiration. Though structures of the transmembrane domain (TMD) of three SLC4 transporters, including AE1, have been resolved previously in their outward-facing (OF) state, no mammalian SLC4 structure has been reported in the inward-facing (IF) conformation. Here we present the cryoEM structures of full-length bovine AE1 with its TMD captured in both IF and OF conformations. Remarkably, both IF-IF homodimers and IF-OF heterodimers were detected. The IF structures feature downward movement in the core domain with significant unexpected elongation of TM11. Molecular modeling and structure guided mutagenesis confirmed the functional significance of residues involved in TM11 elongation. Our data provide direct evidence for an elevator-like mechanism of ion transport by an SLC4 family member.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Proteínas de Transporte de Membrana , Bovinos , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microscopía por Crioelectrón , Dominios Proteicos , Transporte Iónico
3.
Sci Adv ; 4(9): eaat7459, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30255146

RESUMEN

Coxsackievirus A10 (CVA10) recently emerged as a major pathogen of hand, foot, and mouth disease and herpangina in children worldwide, and lack of a vaccine or a cure against CVA10 infections has made therapeutic antibody identification a public health priority. By targeting a local isolate, CVA10-FJ-01, we obtained a potent antibody, 2G8, against all three capsid forms of CVA10. We show that 2G8 exhibited both 100% preventive and 100% therapeutic efficacy against CVA10 infection in mice. Comparisons of the near-atomic cryo-electron microscopy structures of the three forms of CVA10 capsid and their complexes with 2G8 Fab reveal that a single Fab binds a border region across the three capsid proteins (VP1 to VP3) and explain 2G8's remarkable cross-reactivities against all three capsid forms. The atomic structures of this first neutralizing antibody of CVA10 should inform strategies for designing vaccines and therapeutics against CVA10 infections.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Enterovirus Humano A/inmunología , Vacunas Virales/farmacología , Virión/química , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Cápside/química , Reacciones Cruzadas , Microscopía por Crioelectrón , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , Ratones Endogámicos BALB C , Pruebas de Neutralización , Vacunas Virales/inmunología , Virión/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...