Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 13(22): 6626-6635, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35756522

RESUMEN

The cellular glycocalyx, composed of membrane associated glycoproteins and glycolipids, is a complex and dynamic interface that facilitates interactions between cells and their environment. The glycocalyx composition is continuously changing through biosynthesis of new glycoconjugates and membrane turnover. Various glycocalyx components, such as mucins, can also be rapidly shed from the cell surface in response to acute events, such as pathogenic threat. Mucins, which are large extended glycoproteins, deliver important protective functions against infection by creating a physical barrier at the cell surface and by capturing and clearing pathogens through shedding. Evaluating these mucin functions may provide better understanding of early stages of pathogenesis; however, tools to tailor the composition and dynamics of the glycocalyx with precision are still limited. Here, we report a chemical cell surface engineering strategy to model the shedding behavior of mucins with spatial and temporal control. We generated synthetic mucin mimetic glycopolymers terminated with a photolabile membrane anchor, which could be introduced into the membranes of living cells and, subsequently, released upon exposure to UV light. By tuning the molecular density of the artificial glycocalyx we evaluated lectin crosslinking and its effect on shedding, showing that lectins can stabilize the glycocalyx and limit release of the mucin mimetics from the cell surface. Our findings indicate that endogenous and pathogen-associated lectins, which are known to interact with the host-cell glycocalyx, may alter mucin shedding dynamics and influence the protective properties of the mucosal barrier. More broadly, we present a method which enables photoengineering of the glycocalyx and can be used to facilitate the study of glycocalyx dynamics in other biological contexts.

2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34583992

RESUMEN

Membrane-associated mucins protect epithelial cell surfaces against pathogenic threats by serving as nonproductive decoys that capture infectious agents and clear them from the cell surface and by erecting a physical barrier that restricts their access to target receptors on host cells. However, the mechanisms through which mucins function are still poorly defined because of a limited repertoire of tools available for tailoring their structure and composition in living cells with molecular precision. Using synthetic glycopolymer mimetics of mucins, we modeled the mucosal glycocalyx on red blood cells (RBCs) and evaluated its influence on lectin (SNA) and virus (H1N1) adhesion to endogenous sialic acid receptors. The glycocalyx inhibited the rate of SNA and H1N1 adhesion in a size- and density-dependent manner, consistent with the current view of mucins as providing a protective shield against pathogens. Counterintuitively, increasing the density of the mucin mimetics enhanced the retention of bound lectins and viruses. Careful characterization of SNA behavior at the RBC surface using a range of biophysical and imaging techniques revealed lectin-induced crowding and reorganization of the glycocalyx with concomitant enhancement in lectin clustering, presumably through the formation of a more extensive glycan receptor patch at the cell membrane. Our findings indicate that glycan-targeting pathogens may exploit the biophysical and biomechanical properties of mucins to overcome the mucosal glycocalyx barrier.


Asunto(s)
Eritrocitos/metabolismo , Glicocálix/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polisacáridos/metabolismo , Biomimética/métodos , Membrana Celular/metabolismo , Membrana Celular/virología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Eritrocitos/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Membrana Mucosa/metabolismo , Membrana Mucosa/virología , Receptores de Superficie Celular/metabolismo
3.
Biomater Sci ; 9(5): 1652-1659, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33409513

RESUMEN

Growth factor (GF) patterning in stem cell spheroids, such as embryoid bodies (EBs), has been sought to guide their differentiation and organization into functional 3D tissue models and organoids. Current approaches relying on exposure of EBs to gradients of GFs suffer from poor molecular transport in the spheroid microenvironment and from high cost of production and low stability of recombinant GFs. We have developed an alternative method for establishing GF gradients in EBs utilizing stem cell surface engineering with membrane-targeting heparan sulfate-glycomimetic co-receptors for GFs. We have capitalized on the ability of amphiphilic lipid-functionalized glycopolymers with affinity for FGF2 to assemble into nanoscale vesicles with tunable dimensions and extracellular matrix penetrance. Upon size-dependent diffusion into EBs, the vesicles fused with the plasma membranes of stem cells, giving rise to concentric gradients of cells with enhanced FGF2-binding. The extracellular matrix-assisted cell surface remodeling process described is the first example of spatially-targeted glycocalyx engineering in multicellular systems to control GF localization. The glycopolymer structure, vesicle dimensions, and remodeling conditions determine the level of FGF2 adhesion and gradient slope. The increased chemical and thermal stability of the synthetic glycomimetics and the tunability of their GF-binding profile, which is defined by their glycosylation and may be extended to other recombinant or endogenous morphogens beyond FGF2, further increase the versatility of this method.


Asunto(s)
Cuerpos Embrioides , Glicocálix , Diferenciación Celular , Ingeniería Celular , Péptidos y Proteínas de Señalización Intercelular
4.
Faraday Discuss ; 219(0): 138-153, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31313786

RESUMEN

In the mucosal epithelium, the cellular glycocalyx can project tens to hundreds of nanometers into the extracellular space, erecting a physical barrier that provides protective functions, mediates the exchange of nutrients and regulates cellular interactions. Little is understood about how the physical properties of the mucosal glycocalyx influence molecular recognition at the cellular boundary. Here, we report the synthesis of PEG-based glycopolymers with tunable glycan composition, which approximate the extended architecture of mucin glycoproteins, and tether them to the plasma membranes of red blood cells (RBC) to construct an artificial mucin brush-like glycocalyx. We evaluated the association of two lectins, ConA and SNA, with their endogenous glycan ligands on the surface of the remodelled cells. The extended glycocalyx provided protection against agglutination of RBCs by both lectins; however, the rate and magnitude of ConA binding were attenuated to a greater degree in the presence of the glycopolymer spectators compared to those measured for SNA. The different sensitivity of ConA and SNA to glycocalyx crowding likely arises from the distinct presentation of their mannoside and sialoside receptors, respectively, within the native RBC glycocalyx.


Asunto(s)
Materiales Biomiméticos/metabolismo , Eritrocitos/metabolismo , Glicocálix/metabolismo , Hemaglutinación , Polietilenglicoles/metabolismo , Materiales Biomiméticos/química , Concanavalina A/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrocitos/citología , Glicocálix/química , Glicoconjugados/química , Glicoconjugados/metabolismo , Humanos , Mucinas/química , Mucinas/metabolismo , Lectinas de Plantas/metabolismo , Polietilenglicoles/química , Polímeros/química , Polímeros/metabolismo , Proteínas Inactivadoras de Ribosomas/metabolismo , Sambucus nigra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...