Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 350: 141089, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163465

RESUMEN

The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.


Asunto(s)
Fungicidas Industriales , Insecticidas , Abejas , Animales , Agroquímicos/toxicidad , Glutatión Transferasa/metabolismo , Insecticidas/metabolismo , Estructura Molecular
2.
Bull Entomol Res ; 113(5): 637-644, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37614127

RESUMEN

Spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an invasive insect that was first detected in the United States in 2014 and feeds on a wide variety of plants, with economic impacts on the agricultural, ornamental, and timber industries. Part of what likely contributes to the success of L. delicatula in its invaded range is that it appears to be chemically defended by sequestering toxins from its host plant(s), which may deter predators in the introduced range. To determine the identity and behavior of North American predators that feed on spotted lanternfly, we performed a community science study in which we asked members of the public to contribute reports of animals feeding on spotted lanternfly through a Facebook page. The largest group of reported predators was arthropods followed by birds. Araneae was the arthropod order with the most reports and Phasianidae was the most frequently reported bird family. Using Pearson's χ2 tests, we also identified significant relationships between predator behavior and (1) taxonomic group of the predator, (2) L. delicatula life stage, and (3) host plant L. delicatula was observed on. These results can help to guide future research on predator host shifting to spotted lanternfly and potential for biocontrol as a management tactic.


Asunto(s)
Hemípteros , Humanos , Estados Unidos , Animales , Insectos , América del Norte
3.
Environ Entomol ; 52(5): 888-899, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37643187

RESUMEN

While the invasive spotted lanternfly, Lycorma delicatula (White) [Hemiptera: Fulgoridae], continues to expand its range in the United States, there remains a knowledge gap regarding the economic threat that this pest presents to forest ecosystems and production nurseries. L. delicatula uses several common hardwood trees as hosts and a previous study found that short-term feeding can reduce growth of young maple saplings. Herein, long-term feeding over 4 consecutive seasons significantly reduced diameter growth and below-ground starch storage in roots of young silver maples (Acer saccharinum L.), weeping willows (Salix babylonica L.), river birches (Betula nigra L.), and trees of heaven (Ailanthus altissima [Mill.] Swingle) in response to L. delicatula feeding pressure in a density-dependent manner. In Year 3 when feeding pressure was the lowest, silver maple and willow recovered with greater diameter growth than in Year 2. Nutrients essential for photosynthesis and growth (iron, sulfur, and phosphorus) were reduced in leaves of all tree species compared to controls in the second year. This 4-yr study represents a worst-case scenario in which L. delicatula fed on the same trees for 4 consecutive growing seasons. In the wild, population numbers can vary greatly from year to year on individual trees and they move frequently among hosts (until autumn when they settle on A. altissima or other late-season hosts that have not yet senesced). Thus, we would not expect negative impacts of unconfined L. delicatula in natural settings on forest or ornamental trees to be as marked as reported here.

4.
J Econ Entomol ; 116(4): 1211-1224, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37364245

RESUMEN

Management to control the spotted lanternfly, Lycorma delicatula (White), would ideally achieve managers' goals while limiting impacts on nontarget organisms. In a large-scale field study with 45 plots at least 711 m2, we tested foliar applications of dinotefuran and 2 formulations of Beauveria bassiana (Balsamo) Vuillemin, each applied from the ground and separately by helicopter. Applications targeted early instar nymphs. For both application methods, a single treatment with dinotefuran significantly reduced L. delicatula numbers, as measured by catch on sticky bands (91% reduction by air and 84% reduction by ground 19 days after application) and by timed counts (89% reduction by air and 72% reduction by ground 17 days after application). None of the B. bassiana treatments significantly reduced L. delicatula numbers, even after 3 applications. Beauveria bassiana infection in field-collected nymphs ranged from 0.4% to 39.7%, with higher mortality and infection among nymphs collected from ground application plots. Beauveria bassiana conidia did not persist for long on foliage which probably contributed to low population reduction. Nontarget effects were not observed among arthropods captured in blue vane flight intercept traps, San Jose Scale pheromone sticky traps or pitfall traps, but power analysis revealed that small reductions of less than 40% may not be detected despite extensive sampling of 48,804 specimens. These results demonstrate that dinotefuran can markedly reduce local abundance of L. delicatula with little apparent effect on nontarget insects when applied shortly after hatch, and that aerial applications can match or exceed the effectiveness of applications from the ground.


Asunto(s)
Beauveria , Hemípteros , Animales , Insectos , Guanidinas , Ninfa
5.
Environ Entomol ; 52(4): 759-767, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37318326

RESUMEN

For the invasive planthopper Lycorma delicatula, eggs are an attractive target for surveys and management because they can persist from September through May before hatching, and remnants may be retained for years after hatching. Efforts to control this invasive species, though, are hampered by imperfect detection, which impedes early detection and rapid response, obscures management impacts, and reduces the fraction of egg masses that can be managed. To estimate egg mass detectability, we conducted 75 duplicate surveys of 20 × 5 m plots located in forest edges and disturbed areas frequently used by L. delicatula. We fit binomial mixture models and investigated the effects of weather, height (above or below 3 m), season (winter or spring), and basal area of trees within plots, finding no evidence that these factors affected detection rate, which averaged 52.2%. We additionally estimated the fraction of L. delicatula eggs that were laid above 3 m, putting them outside of easy reach for management by scraping or targeted ovicide application. This proportion varied with basal area of trees within plots, and the estimated mean was greater than 50% across the range of basal areas in study plots. Finally, we found that counts of old egg masses correlated with counts of new egg masses laid the year prior, but the ability to infer prior years' egg mass counts was limited. Together, these findings inform managers delimiting L. delicatula populations in mixed habitats and those treating egg masses to slow population growth and spread of this pest.


Asunto(s)
Hemípteros , Animales , Bosques , Árboles , Estaciones del Año
6.
J Econ Entomol ; 116(2): 368-378, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36881675

RESUMEN

Neonicotinoid insecticides are used to manage spotted lanternfly (Lycorma delicatula (White); hereafter SLF), a recently introduced pest in the United States. Neonicotinoids can harm nontargets, such as pollinators potentially exposed via floral resources of treated plants. We quantified neonicotinoid residues in whole flowers of two SLF host plant species, red maple (Acer rubrum L. [Sapindales: Sapindaceae]) and tree-of-heaven (Ailanthus altissima (Mill.) [Sapindales: Simaroubaceae]), treated with post-bloom imidacloprid or dinotefuran applications that differed in timing and method of application. In red maple flowers, dinotefuran residues from fall applications were significantly higher than summer applications, while imidacloprid residues from fall applications were significantly lower than summer applications. Residues did not differ between application methods or sites. In tree-of-heaven flowers, dinotefuran residues were only detected in one of 28 samples at a very low concentration. To assess acute mortality risk to bees from oral exposure to residues in these flowers, we calculated risk quotients (RQ) using mean and 95% prediction interval residue concentrations from treatments in this study and lethal concentrations obtained from acute oral bioassays for Apis mellifera (L. (Hymenoptera: Apidae)) and Osmia cornifrons (Radoszkowski (Hymenoptera: Megachilidae)), then compared these RQs to a level of concern. For A. mellifera, only one treatment group, applied at 2X maximum label rate, had an RQ that exceeded this level. However, several RQs for O. cornifrons exceeded the level of concern, suggesting potential acute risk to solitary bees. Further studies are recommended for more comprehensive risk assessments to nontargets from neonicotinoid use for SLF management.


Asunto(s)
Hemípteros , Abejas , Animales , Árboles , Neonicotinoides , Plantas
7.
J Chem Ecol ; 49(5-6): 313-324, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36964896

RESUMEN

Insect herbivores face multiple challenges to their ability to grow and reproduce. Plants can produce a series of defenses that disrupt and damage the herbivore digestive system, which are heightened upon injury by insect feeding. Additionally, insects face threats from virulent microorganisms that can incur their own set of potential costs to hosts. Microorganisms that invade through the digestive system may function in concert with defenses generated by plants, creating combined assailments on host insects. In our study, we evaluated how tomato defenses interact with an enteric bacterial isolate, Serratia marcescens, in the corn earworm (Helicoverpa zea). We performed bioassays using different tomato cultivars that were induced by methyl jasmonate and larvae orally inoculated with a S. marcescens isolate. Untreated corn earworm larval mortality was low on constitutive tomato, while larvae inoculated with S. marcescens exhibited > 50% mortality within 5 days. Induction treatments elevated both control mortality (~ 45%) and in combination with S. marcescens (> 95%). Larvae also died faster when encountering induced defenses and Serratia. Using a tomato mutant, foliar polyphenol oxidase activity likely had stronger impacts on S. marcescens-mediated larval mortality. Induction treatments also elevated the number of bacterial colony-forming units in the hemolymph of larvae inoculated with Serratia. Larval mortality by S. marcescens was low (< 10%) on artificial diets. Our results demonstrate that plant chemical defenses enhance larval mortality from an opportunistic gut microbe. We propose that the combined damage from both the plant and microbial agent overwhelm the herbivore to increase mortality rates and expedite host death.


Asunto(s)
Mariposas Nocturnas , Solanum lycopersicum , Animales , Zea mays , Larva/microbiología , Bacterias
8.
Front Insect Sci ; 3: 1091332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469498

RESUMEN

The invasive planthopper, spotted lanternfly (SLF), Lycorma delicatula (White) (Hemiptera: Fulgoridae), feeds on a broad range of plants including species of economic importance such as grape. Although SLF feeds on wild and cultivated grape, the effect of grapevines on the insect's life history traits is unknown. This study examined the effect of cultivated Concord grapevines (Vitis labrusca) and the insect's preferred host tree of heaven (TOH), Ailanthus altissima, on SLF development, survival, reproduction, and body mass. Newly emerged nymphs were allowed to feed on either TOH, Concord grapevines or a mixed diet of Concord grapevines plus TOH through adulthood until death. Development, mortality, and oviposition of paired adults were tracked daily to calculate the SLF rate of development, survival, and reproduction among treatments. When feeding exclusively on Concord grapevines, SLF was able to develop and reproduce but had higher mortality, slower development, and produced fewer eggs. SLF fed on the mixed diet of grapevines plus TOH exhibited faster nymphal development, laid more eggs, and had higher body mass compared with those fed only on grape or TOH. SLF had greater survival when fed on either the mixed diet or on TOH alone. We conclude that Concord grapevines are a poor-quality host for SLF, but when combined with TOH, SLF fitness increases above that of feeding on TOH alone. This study supports the elimination of TOH as a part of SLF vineyard management practices.

9.
J Invertebr Pathol ; 194: 107818, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35973510

RESUMEN

Insect guts often harbor an abundance of bacteria. Many of these members are commensal, but some may emerge as opportunistic pathogens when the host is under stress. In this study, we evaluated how dietary nutritional concentration mediates a shift from commensal to pathogenic, and if host species influences those interactions. We used the lepidopterans (Noctuidae) fall armyworm (Spodoptera frugiperda), beet armyworm (Spodoptera exigua), and corn earworm (Helicoverpa zea) as hosts and a Serratia strain initially isolated from healthy fall armyworm. Diet concentration was altered by bulk reduction in nutritional content with dilution using cellulose. Our experiments revealed that low nutrient diet increased mortality from Serratia for beet armyworm and corn earworm. However, for fall armyworm, little mortality was observed in any of the diet combinations. Dietary nutrition and oral inoculation with Serratia did not change the expression of two antimicrobial peptides in fall and beet armyworm, suggesting that other mechanisms that mediate mortality were involved. Our results have implications for how pathogens may persist as commensals in the digestive tract of insects. These findings also suggest that diet plays a very important role in the switch from commensal to pathogen. Finally, our data indicate that the host response to changing conditions is critical in determining if a pathogen may overtake its host and that these three lepidopteran species have different responses to opportunistic enteric pathogens.


Asunto(s)
Mariposas Nocturnas , Serratia , Animales , Celulosa , Dieta , Larva/fisiología , Spodoptera/microbiología , Zea mays
10.
Microbiol Spectr ; 10(4): e0194122, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35758749

RESUMEN

Gut microbiota can have diverse impacts on hosts, the nature of which often depend on the circumstances. For insect gut microbes, the quality and nature of host diets can be a significant force in swinging the pendulum from inconsequential to functionally important. In our study, we addressed whether beneficial microbes in one species impart similar functions to related species under identical conditions. Using fall armyworm (Spodoptera frugiperda), beet armyworm (Spodoptera exigua), and other noctuid hosts, we implemented an axenic rearing strategy and manipulated gut bacterial populations and dietary conditions. Our results revealed that some gut Enterococcus and Enterobacter isolates can facilitate utilization of a poor diet substrate by fall armyworm, but this was not the case for other more optimized diets. While Enterococcus provided benefits to fall armyworm, it was decidedly antagonistic to beet armyworm (Spodoptera exigua) under identical conditions. Unique isolates and bacterial introductions at early growth stages were critical to how both larval hosts performed. Our results provide robust evidence of the roles in which bacteria support lepidopteran larval growth, but also indicate that the directionality of these relationships can differ among congener hosts. IMPORTANCE Insects have intimate relationships with gut microbiota, where bacteria can contribute important functions to their invertebrate hosts. Lepidopterans are important insect pests, but how they engage with their gut bacteria and how that translates to impacts on the host are lacking. Here we demonstrate the facultative nature of gut microbiota in lepidopteran larvae and the importance of diet in driving mutualistic or antagonistic relationships. Using multiple lepidopteran species, we uncover that the same bacteria that can facilitate exploitation of a challenging diet in one host severely diminishes larval performance of another larval species. Additionally, we demonstrate the beneficial functions of gut microbiota on the hosts are not limited to one lineage, but rather multiple isolates can facilitate the exploitation of a suboptimal diet. Our results illuminate the context-dependent nature of the gut microbiomes in invertebrates, and how host-specific microbial engagement can produce dramatically different interactions.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bacterias , Larva/microbiología , Spodoptera/microbiología , Simbiosis
11.
Mol Ecol ; 31(9): 2752-2765, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35258140

RESUMEN

Baculoviruses can induce climbing behaviour in their caterpillar hosts to ensure they die at elevated positions to enhance virus transmission, providing an excellent model to study parasitic manipulation of host behaviour. Here, we demonstrate that climbing behaviour occurred mostly during daylight hours, and that the height at death of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV)-infected larvae increases with the height of the light source. Phototaxic and electroretinogram (ERG) responses were enhanced after HearNPV-infection in host larvae, and ablation of stemmata in infected larvae prevented both phototaxis and climbing behaviour. Through transcriptome and quantitative PCR, we confirmed that two opsin genes (a blue light-sensitive gene, HaBL; and a long wave-sensitive gene, HaLW) as well as the TRPL (transient receptor potential-like channel protein) gene, all integral to the host's visual perception pathway, were significantly upregulated after HearNPV infection. Knockout of HaBL, HaLW, or TRPL genes using the CRISPR/Cas9 system resulted in significantly reduced ERG responses, phototaxis, and climbing behaviour in HearNPV-infected larvae. These results reveal that HearNPV alters the expression of specific genes to hijack host visual perception at fundamental levels-photoreception and phototransduction-in order to induce climbing behaviour in host larvae.


Asunto(s)
Lepidópteros , Nucleopoliedrovirus , Animales , Baculoviridae , Larva/genética , Lepidópteros/fisiología , Nucleopoliedrovirus/genética , Percepción Visual
12.
Environ Entomol ; 51(2): 471-481, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35020889

RESUMEN

Since 2000, wild black cherry (Prunus serotina Ehrh.) has produced erratic seed crops, especially in the Allegheny National Forest where poor seed production has been implicated in difficulties with black cherry regeneration in forest stands. Given that black cherry is insect pollinated and unable to produce viable seed from self-pollination, a reduction in seed crops could be due to a pollination deficit; however, its key pollinators are unknown. Identifying the pollinators and factors that influence pollinator abundance and fidelity is critical for supporting and enhancing seed production for this valuable timber species. Over a two-year period in developed, semideveloped, and forested areas in Pennsylvania, we identified the potential pollinators of black cherry and examined how their abundance, along with several other abiotic and biotic factors, influenced viable seed production. We found that andrenid (Andrenidae: Hymenoptera) bees are likely the most important pollinators. The proportion of viable seeds increased as the number of andrenids increased, and these ground nesting bees were most abundant on forest edges, highlighting this habitat's potential to support pollination services. Andrenids carried an average of 347-fold more black cherry pollen than flies and 18-fold more than halictid (Halictidae: Hymenoptera) bees. We did not find a significant relationship between the abundance of any other taxa besides andrenids and viable seed production. Black cherry flowers also provide resources for natural enemies such as the economically important parasitoid of Popillia japonica Newman (Scarabaeidae: Coleoptera), Tiphia vernalis Rohwer (Tiphiidae: Hymenoptera), which was observed feeding on black cherry nectar in this study.


Asunto(s)
Escarabajos , Himenópteros , Prunus avium , Rosaceae , Rosales , Animales , Abejas , Productos Agrícolas , Flores , Insectos , Polinización , Semillas
14.
Oecologia ; 198(1): 167-178, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741665

RESUMEN

Insects frequently confront different microbial assemblages. Bacteria inhabiting an insect gut are often commensal, but some can become pathogenic when the insect is compromised from different stressors. Herbivores are often confronted by various forms of plant resistance, but how defenses generate opportunistic microbial infections from residents in the gut are not well understood. In this study, we evaluated the pathogenic tendencies of Serratia isolated from the digestive system of healthy fall armyworm larvae (Spodoptera frugiperda) and how it interfaces with plant defenses. We initially selected Serratia strains that varied in their direct expression of virulence factors. Inoculation of the different isolates into the fall armyworm body cavity indicated differing levels of pathogenicity, with some strains exhibiting no effects while others causing mortality 24 h after injection. Oral inoculations of pathogens on larvae provided artificial diets caused marginal (< 7%) mortality. However, when insects were provided different maize genotypes, mortality from Serratia increased and was higher on plants exhibiting elevated levels of herbivore resistance (< 50% mortality). Maize defenses facilitated an initial invasion of pathogenic Serratia into the larval hemocoel¸ which was capable of overcoming insect antimicrobial defenses. Tomato and soybean further indicated elevated mortality due to Serratia compared to artificial diets and differences between plant genotypes. Our results indicate plants can facilitate the incipient emergence of pathobionts within gut of fall armyworm. The ability of resident gut bacteria to switch from a commensal to pathogenic lifestyle has significant ramifications for the host and is likely a broader phenomenon in multitrophic interactions facilitated by plant defenses.


Asunto(s)
Serratia , Zea mays , Animales , Herbivoria , Larva , Spodoptera
15.
Front Insect Sci ; 2: 1080124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38468764

RESUMEN

Spotted lanternfly (SLF; Lycorma delicatula White; Hemiptera: Fulgoridae) invaded the US from Asia and was first detected in 2014; currently, populations have established in 14 states primarily in the Northeast and Mid-Atlantic. It feeds voraciously on phloem sap from a broad range of host plants, with a preference for tree of heaven (Ailanthus altissima [Sapindales: Simaroubaceae]), grapevines (Vitis spp. [Vitales: Vitaceae]), and several common hardwood tree species. We evaluated the impacts of fourth instars and adults confined to a single branch or whole trees on gas exchange attributes (carbon assimilation [photosynthetic rate], transpiration and stomatal conductance), selected nutrients, and diameter growth using young saplings of four host tree species planted in a common garden. In general, the effects of adults on trees were greater than nymphs, although there was variation depending on tree species, pest density, and time post-infestation. Nymphs on a single branch of red maple (Acer rubrum [Sapindales: Sapindaceae]), or silver maple (Acer saccharinum [Sapindales: Sapindaceae]) at three densities (0, 15, or 30) had no significant effects on gas exchange. In contrast, 40 adults confined to a single branch of red or silver maple rapidly suppressed gas exchange and reduced nitrogen concentration in leaves; soluble sugars in branch wood were reduced in the fall for silver maple and in the following spring for red maple. Fourth instars confined to whole silver maple trees reduced soluble sugars in leaves and branch wood, and reduced tree diameter growth by >50% during the next growing season. In contrast, fourth instars in whole tree enclosures had no effects on black walnut (Juglans nigra [Fagales: Juglandaceae]). SLF enclosed on tree of heaven at 80 adults per tree suppressed gas exchange after two weeks of feeding, but did not alter non-structural carbohydrates, nitrogen concentrations, or tree growth. Results suggest that moderate to heavy feeding by SLF on young maple saplings may impair tree growth, which could have implications for production nurseries and forest managers.

16.
Sci Rep ; 11(1): 15774, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349195

RESUMEN

Lycorma delicatula (spotted lanternfly) has a broad host range with a strong preference for the invasive host plant from its native range, tree of heaven (Ailanthus altissima); it had long been speculated that L. delicatula could not develop or reproduce without access to tree of heaven. In 2019, we found that this assumption was incorrect, but fitness was reduced in the absence of A. altissima in that the number of egg masses laid was dramatically fewer for insects reared on suitable non-A. altissima host plants that had recently been established. We hypothesized that longer established, larger trees (of the same species) would improve the fitness of L. delicatula in the absence of tree of heaven. In spring 2020, we examined insect performance with and without access to A. altissima by tracking development, survival, host tree association and oviposition in large enclosures with trees planted two years prior to the study. Each enclosure included one each of Juglans nigra, Salix babylonica and Acer saccharinum along with either one A. altissima or one Betula nigra; these trees had twice the diameter of the same trees the previous year. We reared nymphs with and without access to A. altissima, released them into the corresponding large enclosures as third instars, and monitored them from early July 2020 through November 2020. We also determined whether lack of access to A. altissima by parents of L. delicatula have any fitness effects on offspring performance. To ensure adequate adult populations for comparing fecundity between treatments, third instars were released into the multi-tree enclosures due to high mortality in earlier instars that occurred in a similar study in 2019. Insect survival was higher and development faster with access to A. altissima. Third and fourth instar nymphs were most frequently observed on A. altissima when it was present, while adults were equally associated with A. saccharinum and A. altissima. In the absence of A. altissima, nymphs were most frequently found on S. babylonica, while adults were most often on A. saccharinum. Females with access to A. altissima deposited nearly 7-fold more egg masses than those without access to A. altissima, which is consistent with the difference in egg mass numbers between the two treatments the previous year; thus, our hypothesis was rejected. The offspring of parents that had been reared without access to A. altissima showed similar survival and development time from egg to adult as offspring from parents that never had access to A. altissima. These findings suggest that managers need to be aware that even in the absence of A. altissima in the landscape, several hardwood host trees can be utilized by L. delicatula to develop and reproduce, but fitness without A. altissima is likely to still be reduced.


Asunto(s)
Ailanthus/parasitología , Hemípteros/fisiología , Interacciones Huésped-Parásitos/fisiología , Animales , Femenino , Hemípteros/crecimiento & desarrollo , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Oviposición
17.
Sci Rep ; 11(1): 4429, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627698

RESUMEN

Plants can have fundamental roles in shaping bacterial communities associated with insect herbivores. For larval lepidopterans (caterpillars), diet has been shown to be a driving force shaping gut microbial communities, where the gut microbiome of insects feeding on different plant species and genotypes can vary in composition and diversity. In this study, we aimed to better understand the roles of plant genotypes, sources of microbiota, and the host gut environment in structuring bacterial communities. We used multiple maize genotypes and fall armyworm (Spodoptera frugiperda) larvae as models to parse these drivers. We performed a series of experiments using axenic larvae that received a mixed microbial community prepared from frass from larvae that consumed field-grown maize. The new larval recipients were then provided different maize genotypes that were gamma-irradiated to minimize bacteria coming from the plant during feeding. For field-collected maize, there were no differences in community structure, but we did observe differences in gut community membership. In the controlled experiment, the microbial inoculation source, plant genotype, and their interactions impacted the membership and structure of gut bacterial communities. Compared to axenic larvae, fall armyworm larvae that received frass inoculum experienced reduced growth. Our results document the role of microbial sources and plant genotypes in contributing to variation in gut bacterial communities in herbivorous larvae. While more research is needed to shed light on the mechanisms driving this variation, these results provide a method for incorporating greater gut bacterial community complexity into laboratory-reared larvae.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Spodoptera/microbiología , Zea mays/genética , Animales , Bacterias/crecimiento & desarrollo , Dieta , Genotipo , Larva/crecimiento & desarrollo , Larva/microbiología
18.
Insect Sci ; 28(1): 103-114, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31953986

RESUMEN

Insects possess specific immune responses to protect themselves from different types of pathogens. Activation of immune cascades can inflict significant developmental costs on the surviving host. To characterize infection kinetics in a surviving host that experiences baculovirus inoculation, it is crucial to determine the timing of immune responses. Here, we investigated time-dependent immune responses and developmental costs elicited by inoculations from each of two wild-type baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Helicoverpa zea single nucleopolyhedrovirus (HzSNPV), in their common host H. zea. As H. zea is a semi-permissive host of AcMNPV and fully permissive to HzSNPV, we hypothesized there are differential immune responses and fitness costs associated with resisting infection by each virus species. Newly molted 4th-instar larvae that were inoculated with a low dose (LD15 ) of either virus showed significantly higher hemolymph FAD-glucose dehydrogenase (GLD) activities compared to the corresponding control larvae. Hemolymph phenoloxidase (PO) activity, protein concentration and total hemocyte numbers were not increased, but instead were lower than in control larvae at some time points post-inoculation. Larvae that survived either virus inoculation exhibited reduced pupal weight; survivors inoculated with AcMNPV grew slower than the control larvae, while survivors of HzSNPV pupated earlier than control larvae. Our results highlight the complexity of immune responses and fitness costs associated with combating different baculoviruses.


Asunto(s)
Aptitud Genética , Inmunidad Innata , Mariposas Nocturnas/inmunología , Animales , Larva/crecimiento & desarrollo , Larva/inmunología , Larva/virología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/virología , Nucleopoliedrovirus , Pupa/crecimiento & desarrollo , Pupa/inmunología , Pupa/virología , Factores de Tiempo
19.
Environ Entomol ; 49(5): 1012-1018, 2020 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-32814958

RESUMEN

Spotted lanternfly (Lycorma delicatula) is a recently introduced pest in the United States, where it threatens the wine, timber, and ornamentals industries. Knowledge of the dispersal ability of L. delicatula is key to developing effective management strategies for this invasive pest. We conducted a mark, release, re-sight study, marking nymphs with fluorescent powders and observing dispersal distances from a central release point at three time points over 7 d following release. To examine how dispersal patterns changed over the course of nymphal development, we repeated this process for each of L. delicatula's four instars. All releases were conducted in contiguous, deciduous forest, which is a widespread habitat type within L. delicatula's invaded range and a habitat where this pest may have negative ecological and economic impacts. We found that nymphs displayed clear directionality in their movement following release, apparently preferring to move uphill on the modest 6° grade at our release site. Most nymphs remained near the release location, while some moved tens of meters. The maximum displacement we observed was 65 m from the release point, 10 d after release. Nymphs were re-sighted singly and in small groups on a variety of trees, shrubs, and understory vegetation. All four instars had similar dispersal distances over time, though third instar nymphs moved farthest on average, with estimated median displacement of 16.9 m 7 d after release. Further studies are needed to provide additional information on what factors influence spotted lanternfly dispersal.


Asunto(s)
Hemípteros , Animales , Bosques , Ninfa , Árboles
20.
J Chem Ecol ; 46(9): 891-905, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32700062

RESUMEN

The effect of temperature on insect-plant interactions in the face of changing climate is complex as the plant, its herbivores and their interactions are usually affected differentially leading to an asymmetry in response. Using experimental warming and a combination of biochemical and herbivory bioassays, the effects of elevated temperatures and herbivore damage (Helicoverpa zea) on resistance and tolerance traits of Solanum lycopersicum var. Better boy (tomato), as well as herbivory performance and salivary defense elicitors were examined. Insects and plants were differentially sensitive towards warming within the experimental temperature range. Herbivore growth rate increased with temperature, whereas plants growth as well as the ability to tolerate stress measured by photosynthesis recovery and regrowth ability were compromised at the highest temperature regime. In particular, temperature influenced the caterpillars' capacity to induce plant defenses due to changes in the amount of a salivary defense elicitor, glucose oxidase (GOX). This was further complexed by the temperature effects on plant inducibility, which was significantly enhanced at an above-optimum temperature; this paralleled with an increased plants resistance to herbivory but significantly varied between previously damaged and undamaged leaves. Elevated temperatures produced asymmetry in species' responses and changes in the relationship among species, indicating a more complicated response under a climate change scenario.


Asunto(s)
Cambio Climático , Glucosa Oxidasa/metabolismo , Interacciones Huésped-Parásitos , Lepidópteros/fisiología , Hojas de la Planta/parasitología , Proteínas y Péptidos Salivales/metabolismo , Solanum lycopersicum/parasitología , Animales , Conducta Animal/fisiología , Conducta Alimentaria/fisiología , Herbivoria , Calor , Larva/enzimología , Larva/fisiología , Solanum lycopersicum/metabolismo , Hojas de la Planta/metabolismo , Saliva/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...