Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(6): e0029423, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37272794

RESUMEN

Serpins are a superfamily of proteins that regulate a variety of physiological processes by irreversibly inhibiting the enzymatic activity of different serine proteases. For example, Serpin Family B Member 8 (Serpin B8, also known as PI8 and CAP2) binds to and inhibits the proprotein convertase furin. Like many other viral pathogens, human immunodeficiency virus type 1 (HIV-1) exploits furin for the proteolytic activation of its envelope glycoprotein (Env). Since the furin inhibitor Serpin B8 is expressed in primary target cells of HIV-1 and induced under inflammatory conditions, we hypothesized that it might interfere with HIV-1 Env maturation and decrease infectivity of newly produced virions. Indeed, recombinant Serpin B8 reduced furin-mediated cleavage of an HIV-1 Env reporter substrate in vitro. However, Serpin B8 did not affect Env maturation or reduce HIV-1 particle infectivity when expressed in HIV-1-producing cells. Immunofluorescence imaging, dimerization assays and in silico sequence analyses revealed that Serpin B8 failed to inhibit intracellular furin since both proteins localized to different subcellular compartments. We therefore aimed at rendering Serpin B8 active against HIV-1 by relocalizing it to furin-containing secretory compartments. Indeed, the addition of a heterologous signal peptide conferred potent anti-HIV-1 activity to Serpin B8 and significantly decreased infectivity of newly produced viral particles. Thus, our findings demonstrate that subcellular relocalization of a cellular protease inhibitor can result in efficient inhibition of infectious HIV-1 production. IMPORTANCE Many cellular proteases serve as dependency factors during viral infection and are hijacked by viruses for the maturation of their own (glyco)proteins. Consequently, inhibition of these cellular proteases may represent a means to inhibit the spread of viral infection. For example, several studies have investigated the serine protease furin as a potential therapeutic target since this protease cleaves and activates several viral envelope proteins, including HIV-1 Env. Besides the development of small molecule inhibitors, cell-intrinsic protease inhibitors may also be exploited to advance current antiviral treatment approaches. Here, we show that Serpin B8, an endogenous furin inhibitor, can inhibit HIV-1 Env maturation and efficiently reduce infectious HIV-1 production when rerouted to the secretory pathway. The results of our study not only provide important insights into the biology of Serpins, but also show how protein engineering of an endogenous furin inhibitor can render it active against HIV-1.


Asunto(s)
Furina , VIH-1 , Serpinas , Humanos , Línea Celular , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Furina/metabolismo , VIH-1/fisiología , Serpinas/química , Serpinas/metabolismo , Serpinas/farmacología , Replicación Viral
2.
PLoS Pathog ; 17(11): e1009728, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780577

RESUMEN

The accessory protein Nef of human and simian immunodeficiency viruses (HIV and SIV) is an important pathogenicity factor known to interact with cellular protein kinases and other signaling proteins. A canonical SH3 domain binding motif in Nef is required for most of these interactions. For example, HIV-1 Nef activates the tyrosine kinase Hck by tightly binding to its SH3 domain. An archetypal contact between a negatively charged SH3 residue and a highly conserved arginine in Nef (Arg77) plays a key role here. Combining structural analyses with functional assays, we here show that Nef proteins have also developed a distinct structural strategy-termed the "R-clamp"-that favors the formation of this salt bridge via buttressing Arg77. Comparison of evolutionarily diverse Nef proteins revealed that several distinct R-clamps have evolved that are functionally equivalent but differ in the side chain compositions of Nef residues 83 and 120. Whereas a similar R-clamp design is shared by Nef proteins of HIV-1 groups M, O, and P, as well as SIVgor, the Nef proteins of SIV from the Eastern chimpanzee subspecies (SIVcpzP.t.s.) exclusively utilize another type of R-clamp. By contrast, SIV of Central chimpanzees (SIVcpzP.t.t.) and HIV-1 group N strains show more heterogenous R-clamp design principles, including a non-functional evolutionary intermediate of the aforementioned two classes. These data add to our understanding of the structural basis of SH3 binding and kinase deregulation by Nef, and provide an interesting example of primate lentiviral protein evolution.


Asunto(s)
Evolución Molecular , Infecciones por VIH/metabolismo , Lentivirus/genética , Proteínas Proto-Oncogénicas c-hck/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Dominios Homologos src , Secuencia de Aminoácidos , Animales , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Proteínas Proto-Oncogénicas c-hck/genética , Homología de Secuencia de Aminoácido , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
3.
Cell Rep ; 34(13): 108916, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33765414

RESUMEN

The presence of an ORF6 gene distinguishes sarbecoviruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 from other betacoronaviruses. Here we show that ORF6 inhibits induction of innate immune signaling, including upregulation of type I interferon (IFN) upon viral infection as well as type I and III IFN signaling. Intriguingly, ORF6 proteins from SARS-CoV-2 lineages are more efficient antagonists of innate immunity than their orthologs from SARS-CoV lineages. Mutational analyses identified residues E46 and Q56 as important determinants of the antagonistic activity of SARS-CoV-2 ORF6. Moreover, we show that the anti-innate immune activity of ORF6 depends on its C-terminal region and that ORF6 inhibits nuclear translocation of IRF3. Finally, we identify naturally occurring frameshift/nonsense mutations that result in an inactivating truncation of ORF6 in approximately 0.2% of SARS-CoV-2 isolates. Our findings suggest that ORF6 contributes to the poor IFN activation observed in individuals with coronavirus disease 2019 (COVID-19).


Asunto(s)
COVID-19/metabolismo , Interferón Tipo I/metabolismo , Proteínas Virales/metabolismo , Animales , COVID-19/genética , Chlorocebus aethiops , Células HEK293 , Humanos , Inmunidad Innata/inmunología , SARS-CoV-2/aislamiento & purificación , Transducción de Señal/inmunología , Células Vero , Proteínas Virales/genética
4.
mBio ; 11(4)2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665270

RESUMEN

HLA-C-mediated antigen presentation induces the killing of human immunodeficiency virus (HIV)-infected CD4+ T cells by cytotoxic T lymphocytes (CTLs). To evade killing, many HIV-1 group M strains decrease HLA-C surface levels using their accessory protein Vpu. However, some HIV-1 group M isolates lack this activity, possibly to prevent the activation of natural killer (NK) cells. Analyzing diverse primate lentiviruses, we found that Vpu-mediated HLA-C downregulation is not limited to pandemic group M but is also found in HIV-1 groups O and P as well as several simian immunodeficiency viruses (SIVs). We show that Vpu targets HLA-C primarily at the protein level, independently of its ability to suppress NF-κB-driven gene expression, and that in some viral lineages, HLA-C downregulation may come at the cost of efficient counteraction of the restriction factor tetherin. Remarkably, HIV-2, which does not carry a vpu gene, uses its accessory protein Vif to decrease HLA-C surface expression. This Vif activity requires intact binding sites for the Cullin5/Elongin ubiquitin ligase complex but is separable from its ability to counteract APOBEC3G. Similar to HIV-1 Vpu, the degree of HIV-2 Vif-mediated HLA-C downregulation varies considerably among different virus isolates. In agreement with opposing selection pressures in vivo, we show that the reduction of HLA-C surface levels by HIV-2 Vif is accompanied by increased NK cell-mediated killing. In summary, our results highlight the complex role of HLA-C in lentiviral infections and demonstrate that HIV-1 and HIV-2 have evolved at least two independent mechanisms to decrease HLA-C levels on infected cells.IMPORTANCE Genome-wide association studies suggest that HLA-C expression is a major determinant of viral load set points and CD4+ T cell counts in HIV-infected individuals. On the one hand, efficient HLA-C expression enables the killing of infected cells by cytotoxic T lymphocytes (CTLs). On the other hand, HLA-C sends inhibitory signals to natural killer (NK) cells and enhances the infectivity of newly produced HIV particles. HIV-1 group M viruses modulate HLA-C expression using the accessory protein Vpu, possibly to balance CTL- and NK cell-mediated immune responses. Here, we show that the second human immunodeficiency virus, HIV-2, can use its accessory protein Vif to evade HLA-C-mediated restriction. Furthermore, our mutational analyses provide insights into the underlying molecular mechanisms. In summary, our results reveal how the two human AIDS viruses modulate HLA-C, a key component of the antiviral immune response.


Asunto(s)
Evolución Molecular , VIH-1/genética , VIH-2/genética , Antígenos HLA-C/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas Reguladoras y Accesorias Virales/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/inmunología , VIH-2/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Células Asesinas Naturales/inmunología , Linfocitos T Citotóxicos/inmunología , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/inmunología
5.
mBio ; 11(3)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457250

RESUMEN

Peroxisomes are found in essentially all eukaryotic cells and have been described as important hubs in innate sensing and the induction of type III interferons upon viral infection. Nevertheless, it remains poorly investigated how viral pathogens modulate biogenesis or function of peroxisomes to evade innate sensing and restriction. In a recent study, Hobman and colleagues found that the accessory viral protein u (Vpu) of HIV-1 inhibits peroxisome activity by depleting cellular peroxisome pools. This depletion could be ascribed to a Vpu-dependent induction of four microRNAs (miRNAs) that suppress the expression of peroxisomal biogenesis factors PEX2, PEX7, PEX11B, and PEX13. Although the downstream effects on antiretroviral gene expression and HIV-1 replication remain to be determined, these findings provide important insights into peroxisome biogenesis and the modulation of cell organelles by HIV-1 Vpu.


Asunto(s)
Seropositividad para VIH , VIH-1 , Proteínas del Virus de la Inmunodeficiencia Humana , Humanos , Peroxisomas , Proteínas Reguladoras y Accesorias Virales
6.
Elife ; 82019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30717826

RESUMEN

Many viral pathogens target innate sensing cascades and/or cellular transcription factors to suppress antiviral immune responses. Here, we show that the accessory viral protein U (Vpu) of HIV-1 exerts broad immunosuppressive effects by inhibiting activation of the transcription factor NF-κB. Global transcriptional profiling of infected CD4 +T cells revealed that vpu-deficient HIV-1 strains induce substantially stronger immune responses than the respective wild type viruses. Gene set enrichment analyses and cytokine arrays showed that Vpu suppresses the expression of NF-κB targets including interferons and restriction factors. Mutational analyses demonstrated that this immunosuppressive activity of Vpu is independent of its ability to counteract the restriction factor and innate sensor tetherin. However, Vpu-mediated inhibition of immune activation required an arginine residue in the cytoplasmic domain that is critical for blocking NF-κB signaling downstream of tetherin. In summary, our findings demonstrate that HIV-1 Vpu potently suppresses NF-κB-elicited antiviral immune responses at the transcriptional level.


Asunto(s)
VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Evasión Inmune , Inmunidad Innata , FN-kappa B/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Regulación hacia Abajo , Humanos , Transcripción Genética
7.
Cell Host Microbe ; 23(1): 110-120.e7, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29324226

RESUMEN

The HIV-1-encoded accessory protein Vpu exerts several immunomodulatory functions, including counteraction of the host restriction factor tetherin, downmodulation of CD4, and inhibition of NF-κB activity to facilitate HIV-1 infection. However, the relative contribution of individual Vpu functions to HIV-1 infection in vivo remained unclear. Here, we used a humanized mouse model and HIV-1 strains with selective mutations in vpu to demonstrate that the anti-tetherin activity of Vpu is a prerequisite for efficient viral spread during the early phase of infection. Mathematical modeling and gain-of-function mutations in SIVcpz, the simian precursor of pandemic HIV-1, corroborate this finding. Blockage of interferon signaling combined with transcriptome analyses revealed that basal tetherin levels are sufficient to control viral replication. These results establish tetherin as a key effector of the intrinsic immune defense against HIV-1, and they demonstrate that Vpu-mediated tetherin antagonism is critical for efficient viral spread during the initial phase of HIV-1 replication.


Asunto(s)
Infecciones por VIH/patología , VIH-1/crecimiento & desarrollo , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas Reguladoras y Accesorias Virales/genética , Replicación Viral/fisiología , Animales , Antígenos CD/biosíntesis , Línea Celular Tumoral , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/biosíntesis , Células HEK293 , Infecciones por VIH/virología , VIH-1/genética , Humanos , Interferón Tipo I/inmunología , Células Jurkat , Ratones , Ratones Endogámicos NOD , FN-kappa B/antagonistas & inhibidores
8.
PLoS One ; 10(11): e0142118, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26554585

RESUMEN

BACKGROUND: Pandemic strains of HIV-1 (group M) encode a total of nine structural (gag, pol, env), regulatory (rev, tat) and accessory (vif, vpr, vpu, nef) genes. However, some subtype A and C viruses exhibit an unusual gene arrangement in which the first exon of rev (rev1) and the vpu gene are placed in the same open reading frame. Although this rev1-vpu gene fusion is present in a considerable fraction of HIV-1 strains, its functional significance is unknown. RESULTS: Examining infectious molecular clones (IMCs) of HIV-1 that encode the rev1-vpu polymorphism, we show that a fusion protein is expressed in infected cells. Due to the splicing pattern of viral mRNA, however, these same IMCs also express a regular Vpu protein, which is produced at much higher levels. To investigate the function of the fusion gene, we characterized isogenic IMC pairs differing only in their ability to express a Rev1-Vpu protein. Analysis in transfected HEK293T and infected CD4+ T cells showed that all of these viruses were equally active in known Vpu functions, such as down-modulation of CD4 or counteraction of tetherin. Furthermore, the polymorphism did not affect Vpu-mediated inhibition of NF-кB activation or Rev-dependent nuclear export of incompletely spliced viral mRNAs. There was also no evidence for enhanced replication of Rev1-Vpu expressing viruses in primary PBMCs or ex vivo infected human lymphoid tissues. Finally, the frequency of HIV-1 quasispecies members that encoded a rev1-vpu fusion gene did not change in HIV-1 infected individuals over time. CONCLUSIONS: Expression of a rev1-vpu fusion gene does not affect regular Rev and Vpu functions or alter HIV-1 replication in primary target cells. Since there is no evidence for increased replication fitness of rev1-vpu encoding viruses, this polymorphism likely emerged in the context of other mutations within and/or outside the rev1-vpu intergenic region, and may have a neutral phenotype.


Asunto(s)
Regulación Viral de la Expresión Génica , Fusión Génica , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas Reguladoras y Accesorias Virales/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Células HEK293 , Humanos , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...