Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39282441

RESUMEN

Time-resolved small-angle X-ray experiments (TR-SAXS) are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in G4 folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 20.6 to 12.6 Å. The collapse is monophasic and is complete in less than 600 ms. Additional hand-mixing pH-jump kinetic studies show that slower kinetic steps follow the collapse. The folded and unfolded states at equilibrium were further characterized by SAXS studies and other biophysical tools, to show that G4 unfolding was complete at alkaline pH, but not in LiCl solution as is often claimed. The SAXS Ensemble Optimization Method (EOM) analysis reveals models of the unfolded state as a dynamic ensemble of flexible oligonucleotide chains with a variety of transient hairpin structures. These results suggest a G4 folding pathway in which a rapid collapse, analogous to molten globule formation seen in proteins, is followed by a confined conformational search within the collapsed particle to form the native contacts ultimately found in the stable folded form.

2.
bioRxiv ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39314299

RESUMEN

The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally-determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs in their free state and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof-of-principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.

3.
Sci Adv ; 10(35): eadm9926, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39196930

RESUMEN

Intrinsically disordered proteins (IDPs) perform a broad range of functions in biology, suggesting that the ability to design IDPs could help expand the repertoire of proteins with novel functions. Computational design of IDPs with specific conformational properties has, however, been difficult because of their substantial dynamics and structural complexity. We describe a general algorithm for designing IDPs with specific structural properties. We demonstrate the power of the algorithm by generating variants of naturally occurring IDPs that differ in compaction, long-range contacts, and propensity to phase separate. We experimentally tested and validated our designs and analyzed the sequence features that determine conformations. We show how our results are captured by a machine learning model, enabling us to speed up the algorithm. Our work expands the toolbox for computational protein design and will facilitate the design of proteins whose functions exploit the many properties afforded by protein disorder.


Asunto(s)
Algoritmos , Proteínas Intrínsecamente Desordenadas , Conformación Proteica , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Modelos Moleculares , Aprendizaje Automático , Biología Computacional/métodos , Ingeniería de Proteínas/métodos
4.
J Appl Crystallogr ; 57(Pt 1): 194-208, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38322719

RESUMEN

BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and D max finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.

5.
Sci Adv ; 10(7): eadj8083, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363837

RESUMEN

Netrins dictate attractive and repulsive responses during axon growth and cell migration, where the presence of the receptor Uncoordinated-5 (UNC-5) on target cells results in repulsion. Here, we showed that UNC-5 is a heparin-binding protein, determined its structure bound to a heparin fragment, and could modulate UNC-5-heparin affinity using a directed evolution platform or structure-based rational design. We demonstrated that UNC-5 and UNC-6/netrin form a large, stable, and rigid complex in the presence of heparin, and heparin and UNC-5 exclude the attractive UNC-40/DCC receptor from binding to UNC-6/netrin to a large extent. Caenorhabditis elegans with a heparin-binding-deficient UNC-5 fail to establish proper gonad morphology due to abrogated cell migration, which relies on repulsive UNC-5 signaling in response to UNC-6. Combining UNC-5 mutations targeting heparin and UNC-6/netrin contacts results in complete cell migration and axon guidance defects. Our findings establish repulsive netrin responses to be mediated through a glycosaminoglycan-regulated macromolecular complex.


Asunto(s)
Axones , Proteínas de Caenorhabditis elegans , Animales , Netrinas/metabolismo , Axones/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Caenorhabditis elegans/metabolismo , Heparina , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Moléculas de Adhesión Celular/genética
6.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38405867

RESUMEN

The General Stress Response promotes survival of bacteria in adverse conditions, but how sensor proteins transduce species-specific signals to initiate the response is not known. The serine/threonine phosphatase RsbU initiates the General Stress Response in B. subtilis upon binding a partner protein (RsbT) that is released from sequestration by environmental stresses. We report that RsbT activates RsbU by inducing otherwise flexible linkers of RsbU to form a short coiled-coil that dimerizes and activates the phosphatase domains. Importantly, we present evidence that related coiled-coil linkers and phosphatase dimers transduce signals from diverse sensor domains to control the General Stress Response and other signaling across bacterial phyla. These results additionally resolve the mystery of how shared sensory domains control serine/threonine phosphatases, diguanylate cyclases and histidine kinases, revealing a common coiled-coil linker transduction mechanism. We propose that this provides bacteria with a modularly exchangeable toolkit for the evolution of diverse signaling pathways.

7.
Nat Struct Mol Biol ; 31(2): 255-265, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177679

RESUMEN

Resistant starch is a prebiotic accessed by gut bacteria with specialized amylases and starch-binding proteins. The human gut symbiont Ruminococcus bromii expresses Sas6 (Starch Adherence System member 6), which consists of two starch-specific carbohydrate-binding modules from family 26 (RbCBM26) and family 74 (RbCBM74). Here, we present the crystal structures of Sas6 and of RbCBM74 bound with a double helical dimer of maltodecaose. The RbCBM74 starch-binding groove complements the double helical α-glucan geometry of amylopectin, suggesting that this module selects this feature in starch granules. Isothermal titration calorimetry and native mass spectrometry demonstrate that RbCBM74 recognizes longer single and double helical α-glucans, while RbCBM26 binds short maltooligosaccharides. Bioinformatic analysis supports the conservation of the amylopectin-targeting platform in CBM74s from resistant-starch degrading bacteria. Our results suggest that RbCBM74 and RbCBM26 within Sas6 recognize discrete aspects of the starch granule, providing molecular insight into how this structure is accommodated by gut bacteria.


Asunto(s)
Glucanos , Almidón , Humanos , Almidón/química , Almidón/metabolismo , Glucanos/química , Glucanos/metabolismo , Amilopectina/metabolismo , Ruminococcus/metabolismo , Bacterias/metabolismo
8.
Autophagy ; 20(2): 380-396, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37791766

RESUMEN

ABBREVIATIONS: AFM: aromatic finger mutant; BH3D: BCL2 homology 3 domain; CCD: coiled-coil domain; CD: circular dichroism spectroscopy; [CysDM1]: C18S and C21S double mutant; [CysDM2]: C137S, and C140S double mutant; [CysTM], C18S, C21S, C137S, and C140S tetrad mutant; Dmax: maximum particle diameter; dRI, differential refractive index; EFA: evolving factor analysis; FHD: flexible helical domain; FL: full length; GFP: green fluorescent protein; HDX-MS: hydrogen/deuterium exchange mass spectrometry; ICP-MS: inductively coupled plasma mass spectrometry; IDR: intrinsically disordered region; ITC, isothermal titration calorimetry; MALS, multi angle light scattering; MBP: maltose-binding protein; MoRFs: molecular recognition features; P(r): pairwise-distance distribution; PtdIns3K: class III phosphatidylinositol 3-kinase; Rg: radius of gyration; SASBDB: small angle scattering biological data bank; SEC: size-exclusion chromatography; SEC-SAXS: size-exclusion chromatography in tandem with small angle X-ray scattering; TEV: tobacco-etch virus; TFE: 2,2,2-trifluoroethanol; TPEN: N,N,N,N-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine; Vc: volume of correlation; WT: wild-type.


Asunto(s)
Autofagia , Zinc , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Autofagia/fisiología , Dominios Proteicos
9.
J Biol Chem ; 299(12): 105421, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923139

RESUMEN

The two-spotted spider mite, Tetranychus urticae, is a major cosmopolitan pest that feeds on more than 1100 plant species. Its genome contains an unprecedentedly large number of genes involved in detoxifying and transporting xenobiotics, including 80 genes that code for UDP glycosyltransferases (UGTs). These enzymes were acquired via horizontal gene transfer from bacteria after loss in the Chelicerata lineage. UGTs are well-known for their role in phase II metabolism; however, their contribution to host adaptation and acaricide resistance in arthropods, such as T. urticae, is not yet resolved. TuUGT202A2 (Tetur22g00270) has been linked to the ability of this pest to adapt to tomato plants. Moreover, it was shown that this enzyme can glycosylate a wide range of flavonoids. To understand this relationship at the molecular level, structural, functional, and computational studies were performed. Structural studies provided specific snapshots of the enzyme in different catalytically relevant stages. The crystal structure of TuUGT202A2 in complex with UDP-glucose was obtained and site-directed mutagenesis paired with molecular dynamic simulations revealed a novel lid-like mechanism involved in the binding of the activated sugar donor. Two additional TuUGT202A2 crystal complexes, UDP-(S)-naringenin and UDP-naringin, demonstrated that this enzyme has a highly plastic and open-ended acceptor-binding site. Overall, this work reveals the molecular basis of substrate promiscuity of TuUGT202A2 and provides novel insights into the structural mechanism of UGTs catalysis.


Asunto(s)
Glicosiltransferasas , Tetranychidae , Genoma , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Plantas/parasitología , Uridina Difosfato , Especificidad por Sustrato , Tetranychidae/enzimología , Tetranychidae/genética
10.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37961110

RESUMEN

Intrinsically disordered proteins (IDPs) perform a wide range of functions in biology, suggesting that the ability to design IDPs could help expand the repertoire of proteins with novel functions. Designing IDPs with specific structural or functional properties has, however, been difficult, in part because determining accurate conformational ensembles of IDPs generally requires a combination of computational modelling and experiments. Motivated by recent advancements in efficient physics-based models for simulations of IDPs, we have developed a general algorithm for designing IDPs with specific structural properties. We demonstrate the power of the algorithm by generating variants of naturally occurring IDPs with different levels of compaction and that vary more than 100 fold in their propensity to undergo phase separation, even while keeping a fixed amino acid composition. We experimentally tested designs of variants of the low-complexity domain of hnRNPA1 and find high accuracy in our computational predictions, both in terms of single-chain compaction and propensity to undergo phase separation. We analyze the sequence features that determine changes in compaction and propensity to phase separate and find an overall good agreement with previous findings for naturally occurring sequences. Our general, physics-based method enables the design of disordered sequences with specified conformational properties. Our algorithm thus expands the toolbox for protein design to include also the most flexible proteins and will enable the design of proteins whose functions exploit the many properties afforded by protein disorder.

11.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37808703

RESUMEN

BioXTAS RAW is a free, open-source program for reduction, analysis and modelling of biological small angle scattering data. Here, the new developments in RAW version 2 are described. These include: improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. SEC-SAXS) buffer and sample region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using REGALS; creation of electron density reconstructions via DENSS; a comparison window showing residuals, ratios, and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. In addition, there is now a RAW API, which can be used without the GUI, providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.

12.
Brain ; 146(12): 5110-5123, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37542466

RESUMEN

Mutations in MPZ (myelin protein zero) can cause demyelinating early-onset Charcot-Marie-Tooth type 1B disease or later onset type 2I/J disease characterized by axonal degeneration, reflecting the diverse roles of MPZ in Schwann cells. MPZ holds apposing membranes of the myelin sheath together, with the adhesion role fulfilled by its extracellular immunoglobulin-like domain (IgMPZ), which oligomerizes. Models for how the IgMPZ might form oligomeric assemblies has been extrapolated from a protein crystal structure in which individual rat IgMPZ subunits are packed together under artificial conditions, forming three weak interfaces. One interface organizes the IgMPZ into tetramers, a second 'dimer' interface links tetramers together across the intraperiod line, and a third hydrophobic interface that mediates binding to lipid bilayers or the same hydrophobic surface on another IgMPZ domain. Presently, there are no data confirming whether the proposed IgMPZ interfaces actually mediate oligomerization in solution, whether they are required for the adhesion activity of MPZ, whether they are important for myelination, or whether their loss results in disease. We performed nuclear magnetic resonance spectroscopy and small angle X-ray scattering analysis of wild-type IgMPZ as well as mutant forms with amino acid substitutions designed to interrupt its presumptive oligomerization interfaces. Here, we confirm the interface that mediates IgMPZ tetramerization, but find that dimerization is mediated by a distinct interface that has yet to be identified. We next correlated different types of Charcot-Marie-Tooth disease symptoms to subregions within IgMPZ tetramers. Variants causing axonal late-onset disease (CMT2I/J) map to surface residues of IgMPZ proximal to the transmembrane domain. Variants causing early-onset demyelinating disease (CMT1B) segregate into two groups: one is described by variants that disrupt the stability of the Ig-fold itself and are largely located within the core of the IgMPZ domain; whereas another describes a region on the surface of IgMPZ tetramers, accessible to protein interactions. Computational docking studies predict that this latter disease-relevant subregion may potentially mediate dimerization of IgMPZ tetramers.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Ratas , Axones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Dominios de Inmunoglobulinas , Mutación/genética , Proteína P0 de la Mielina/genética , Humanos
13.
Sci Rep ; 13(1): 3505, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864087

RESUMEN

GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.


Asunto(s)
Interleucina-2 , Dominios Homologos src , Humanos , Dimerización , Dispersión del Ángulo Pequeño , Linfocitos T , Difracción de Rayos X , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Polímeros , Proteína Adaptadora GRB2/genética
14.
Nucleic Acids Res ; 51(4): 1943-1959, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36715343

RESUMEN

Genomic regions with high guanine content can fold into non-B form DNA four-stranded structures known as G-quadruplexes (G4s). Extensive in vivo investigations have revealed that promoter G4s are transcriptional regulators. Little structural information exists for these G4s embedded within duplexes, their presumed genomic environment. Here, we report the 7.4 Å resolution structure and dynamics of a 28.5 kDa duplex-G4-duplex (DGD) model system using cryo-EM, molecular dynamics, and small-angle X-ray scattering (SAXS) studies. The DGD cryo-EM refined model features a 53° bend induced by a stacked duplex-G4 interaction at the 5' G-tetrad interface with a persistently unstacked 3' duplex. The surrogate complement poly dT loop preferably stacks onto the 3' G-tetrad interface resulting in occlusion of both 5' and 3' tetrad interfaces. Structural analysis shows that the DGD model is quantifiably more druggable than the monomeric G4 structure alone and represents a new structural drug target. Our results illustrate how the integration of cryo-EM, MD, and SAXS can reveal complementary detailed static and dynamic structural information on DNA G4 systems.


Asunto(s)
G-Cuádruplex , Dispersión del Ángulo Pequeño , Microscopía por Crioelectrón , Difracción de Rayos X , ADN/química
15.
Sci Adv ; 8(49): eadd2191, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490335

RESUMEN

SARS-CoV-2, a human coronavirus, is the causative agent of the COVID-19 pandemic. Its genome is translated into two large polyproteins subsequently cleaved by viral papain-like protease and main protease (Mpro). Polyprotein processing is essential yet incompletely understood. We studied Mpro-mediated processing of the nsp7-11 polyprotein, whose mature products include cofactors of the viral replicase, and identified the order of cleavages. Integrative modeling based on mass spectrometry (including hydrogen-deuterium exchange and cross-linking) and x-ray scattering yielded a nsp7-11 structural ensemble, demonstrating shared secondary structural elements with individual nsps. The pattern of cross-links and HDX footprint of the C145A Mpro and nsp7-11 complex demonstrate preferential binding of the enzyme active site to the polyprotein junction sites and additional transient contacts to help orient the enzyme on its substrate for cleavage. Last, proteolysis assays were used to characterize the effect of inhibitors/binders on Mpro processing/inhibition using the nsp7-11 polyprotein as substrate.

16.
J Mol Biol ; 434(16): 167708, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35777467

RESUMEN

Staphylococcus epidermidis is a commensal bacterium on human skin that is also the leading cause of medical device-related infections. The accumulation-associated protein (Aap) from S. epidermidis is a critical factor for infection via its ability to mediate biofilm formation. The B-repeat superdomain of Aap is composed of 5 to 17 Zn2+-binding B-repeats, which undergo rapid, reversible assembly to form dimer and tetramer species. The tetramer can then undergo a conformational change and nucleate highly stable functional amyloid fibrils. In this study, multiple techniques including analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) are used to probe a panel of B-repeat mutant constructs that assemble to distinct oligomeric states to define the structural characteristics of B-repeat dimer and tetramer species. The B-repeat region from Aap forms an extremely elongated conformation that presents several challenges for standard SAXS analyses. Specialized approaches, such as cross-sectional analyses, allowed for in-depth interpretation of data, while explicit-solvent calculations via WAXSiS allowed for accurate evaluation of atomistic models. The resulting models suggest mechanisms by which Aap functional amyloid fibrils form, illuminating an important contributing factor to recurrent staphylococcal infections.


Asunto(s)
Amiloide , Proteínas Bacterianas , Biopelículas , Staphylococcus epidermidis , Amiloide/química , Amiloide/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Humanos , Modelos Químicos , Mutación , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Staphylococcus epidermidis/fisiología , Difracción de Rayos X
17.
EMBO Rep ; 23(8): e55056, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35762418

RESUMEN

Ubiquitin-binding shuttle UBQLN2 mediates crosstalk between proteasomal degradation and autophagy, likely via interactions with K48- and K63-linked polyubiquitin chains, respectively. UBQLN2 comprises self-associating regions that drive its homotypic liquid-liquid phase separation (LLPS). Specific interactions between one of these regions and ubiquitin inhibit UBQLN2 LLPS. Here, we show that, unlike ubiquitin, the effects of multivalent polyubiquitin chains on UBQLN2 LLPS are highly dependent on chain types. Specifically, K11-Ub4 and K48-Ub4 chains generally inhibit UBQLN2 LLPS, whereas K63-Ub4, M1-Ub4 chains, and a designed tetrameric ubiquitin construct significantly enhance LLPS. We demonstrate that these opposing effects stem from differences in chain conformations but not in affinities between chains and UBQLN2. Chains with extended conformations and increased accessibility to the ubiquitin-binding surface promote UBQLN2 LLPS by enabling a switch between homotypic to partially heterotypic LLPS that is driven by both UBQLN2 self-interactions and interactions between multiple UBQLN2 units with each polyubiquitin chain. Our study provides mechanistic insights into how the structural and conformational properties of polyubiquitin chains contribute to heterotypic LLPS with ubiquitin-binding shuttles and adaptors.


Asunto(s)
Poliubiquitina , Ubiquitina , Modelos Moleculares , Poliubiquitina/metabolismo , Unión Proteica , Ubiquitina/metabolismo , Ubiquitinación
18.
Biochemistry ; 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35535990

RESUMEN

Endogenous circadian clocks control the rhythmicity of a broad range of behavioral and physiological processes, and this is entrained by the daily fluctuations in light and dark. Nocturnin (Noct) is a rhythmically expressed gene regulated by the circadian clock that belongs to the CCR4 family of endonuclease-exonuclease-phosphatase (EEP) enzymes, and the NOCT protein exhibits phosphatase activity, catalyzing the removal of the 2'-phosphate from NADP(H). In addition to its daily nighttime peak of expression, it is also induced by acute stimuli. Loss of Nocturnin (Noct-/-) in mice results in resistance to high-fat diet-induced obesity, and loss of Noct in HEK293T cells confers a protective effect to oxidative stress. Modeling of the full-length Nocturnin protein reveals a partially structured amino terminus that is disparate from its CCR4 family members. The high sequence conservation of a leucine zipper-like (LZ-like) motif, the only structural element in the amino terminus, highlights the potential importance of this domain in modulating phosphatase activity. In vitro biochemical and biophysical techniques demonstrate that the LZ-like domain within the flexible N-terminus is necessary for preserving the active site cleft in an optimal conformation to promote the efficient turnover of the substrate. This modulation occurs in cis and is pivotal in maintaining the stability and conformational integrity of the enzyme. These new findings suggest an additional layer of modulating the activity of Nocturnin in addition to its rhythmicity to provide fine-tuned control over cellular levels of NADPH.

19.
J Biol Chem ; 298(5): 101896, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378131

RESUMEN

Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal ß-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 µM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras , Ruminococcus , Amilopectina/metabolismo , Amilosa/metabolismo , Proteínas Portadoras/metabolismo , Carbohidratos de la Dieta , Humanos , Almidón/metabolismo
20.
Nucleic Acids Res ; 50(7): 4127-4147, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35325198

RESUMEN

We report on higher-order G-quadruplex structures adopted by long promoter sequences obtained by an iterative integrated structural biology approach. Our approach uses quantitative biophysical tools (analytical ultracentrifugation, small-angle X-ray scattering, and circular dichroism spectroscopy) combined with modeling and molecular dynamics simulations, to derive self-consistent structural models. The formal resolution of our approach is 18 angstroms, but in some cases structural features of only a few nucleotides can be discerned. We report here five structures of long (34-70 nt) wild-type sequences selected from three cancer-related promoters: c-Myc, c-Kit and k-Ras. Each sequence studied has a unique structure. Three sequences form structures with two contiguous, stacked, G-quadruplex units. One longer sequence from c-Myc forms a structure with three contiguous stacked quadruplexes. A longer c-Kit sequence forms a quadruplex-hairpin structure. Each structure exhibits interfacial regions between stacked quadruplexes or novel loop geometries that are possible druggable targets. We also report methodological advances in our integrated structural biology approach, which now includes quantitative CD for counting stacked G-tetrads, DNaseI cleavage for hairpin detection and SAXS model refinement. Our results suggest that higher-order quadruplex assemblies may be a common feature within the genome, rather than simple single quadruplex structures.


Asunto(s)
G-Cuádruplex , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Dicroismo Circular , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...