RESUMEN
Water pollution is a major concern for a decaying river. Polluted water reduces ecosystem services and human use of rivers. Therefore, the present study aims to assess the irrigation suitability of the Jalangi River water. A total of 34 pre-selected water samples were gathered from the source to the sink of the Jalangi River with an interval of 10 km and one secondary station's data from February 2012 to January 2022 were used for this purpose. The Piper diagram exhibits that the Jalangi River water is Na+-HCO3- types, and the alkaline earth (Ca2+ + Mg2+) outperforms alkalises (Na+ + K+) and weak acids (HCO3- + CO32-) outperform strong acids (Cl- + SO42-). SAR values ranging from 0.35 to 0.64 show that water is suitable for irrigation and poses no sodicity risks. The %Na results show that 91.18% of water samples are good and acceptable for irrigation. RSC levels indicate a significant alkalinity hazard, with 94.12% of samples considered inappropriate for irrigation. PI findings show that 91.18% of water samples are suitable for irrigation. Apart from the spatial water samples, seasonal water samples exhibit a wide variations as per the nature of irrigation hazards. Gibbs plot demonstrates that the weathering of rocks determined the hydro-chemical evolution of Jalangi River water. This study identifies very little evaporation dominance for pre- and post-monsoon water. The analysis of variance (ANOVA) test illustrates that there are no spatial variations in water quality while seasonal variations are widely noted (p < 0.05). The results also revealed that river water for irrigation during monsoon is suitable compared to the pre-monsoon season. Anthropogenic interventions including riverbed agriculture, and the discharge of untreated sewage from urban areas are playing a crucial role in deteriorating the water quality of the river, which needs substantial attention from the various stakeholders in a participatory, and sustainable manner.
RESUMEN
The decay of rivers and river water pollution are common problems worldwide. However, many works have been performed on decaying rivers in India, and the status of the water quality is still unknown in Jalangi River. To this end, the present study intends to examine the water quality of the Jalangi River to assess ecological status in both the spatial and seasonal dimensions. To depict the spatiality of ecological risks, 34 water samples were collected from the source to the sink of the Jalangi River with an interval of 10 km while 119 water samples were collected from a secondary source during 2012-2022 to capture the seasonal dynamics. In this work, the seasonality and spatiality of change in the river's water quality have been explored. This study used the eutrophication index (EI), organic pollution index (OPI), and overall index of pollution (OIP) to assess the ecological risk. The results illustrated that the values of OPI range from 7.17 to 588, and the values of EI exceed the standard of 1, indicating the critical situation of the ecological status of Jalangi River. The value of OIP ranges between 2.67 and 3.91 revealing the slightly polluted condition of the river water. The study signified the ecological status of the river is in a critical situation due to elevated concentrations of biological oxygen demand, chemical oxygen demand, and low concentrations of dissolved oxygen. The present study found that stagnation of water flow in the river, primarily driven by the eastward tilting of the Bengal basin, triggered water pollution and ecological risk. Moreover, anthropogenic interventions in the form of riverbed agriculture and the discharge of untreated sewage from urban areas are playing a crucial role in deteriorating the water quality of the river. This decay needs substantial attention from the various stakeholders in a participatory manner.
RESUMEN
Assessing river water quality is crucial for human and ecological needs because of the deterioration of the river and escalated water pollution under the threats of anthropogenic activities. In order to assess river water quality, the Damodar River water was evaluated from the perspectives of spatio-temporal dynamics of ecological (organic pollution index or OPI and eutrophication index or EI), bacteriological (coliform count and comprehensive bathing water quality index or CBWQI), and overall water quality assessments (water quality index or WQI and comprehensive pollution index or CPI). The OPI reveals that 44.66% of water samples have heavy organic pollution; however, EI depicts that almost all water samples of Damodar River have severe eutrophication, especially in the pre- and post-monsoon seasons. Moreover, the fecal coliform count and CBWQI indicate the unsuitability of river water for bathing. The overall WQI portrays that 21.56%, 33.59%, and 22.47% of water samples have heavy pollution in pre-monsoon, monsoon, and post-monsoon, respectively. Moreover, 73.39% of water samples have low CPI indicating slight comprehensive pollution. This study also reveals that the pollution level in the Damodar River downstream of the Durgapur barrage is high among the other stations. The major reasons behind the severe contamination of Damodar River water are urban-industrial and agricultural effluents mixing into the river that lead to higher concentrations of BOD, DO, fecal coliform, COD, fluoride TSS, and turbidity in the river water. Thus, this study carries appreciated information on policy recommendations for the different stakeholders of the Damodar River basin including regional planners, agri-engineers, and ecological river engineers for sustainable river management.
Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Humanos , Monitoreo del Ambiente , Ríos , Contaminación del Agua/análisis , Agua Dulce , Bacterias Gramnegativas , India , Contaminantes Químicos del Agua/análisisRESUMEN
River water pollution and water-related health problems are common issues across the world. The present study aims to examine the Jalangi River's water quality to assess its suitability for drinking purposes and associated human health risks. The 34 water samples were collected from the source to the mouth of Jalangi River in 2022 to depict the spatial dynamics while another 119 water samples (2012-2022) were collected from a secondary source to portray the seasonal dynamics. Results indicate better water quality in the lower reach of the river in the monsoon and post-monsoon seasons. Principal component analysis reveals that K+, NO3-, and total alkalinity (TA) play a dominant role in controlling the water quality of the study region, while, CaCO3, Ca2+, and EC in the pre-monsoon, EC, TDS, Na+, and TA in the monsoon, and EC, TDS and TA in the post-monsoon controlled the water quality. The results of ANOVA reveal that BOD, Ca2+, and CaCO3 concentrations in water have significant spatial dynamics, whereas pH, BOD, DO, Cl-, SO42-, Na+, Mg2+, Ca2+, CaCO3, TDS, TA, and EC have seasonal dynamics (p < 0.05). The water quality index depicts that the Jalangi River's water quality ranged from 6.23 to 140.83, i.e., excellent to unsuitable for drinking purposes. Human health risk analysis shows that 32.35% of water samples have non-carcinogenic health risks for all three groups of people, i.e., adults, children, and infants while only 5.88% of water samples have carcinogenic health risks for adults and children. The gradual decay of the Jalangi River coupled with the disposal of urban and agricultural effluents induces river pollution that calls for substantial attention from the various stakeholders to restore the water quality.
Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Humanos , Calidad del Agua , Ríos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , India , Agua Subterránea/química , Agua Potable/análisisRESUMEN
The elevated concentrations of heavy metals in soil considerably threaten ecological and human health. To this end, the present study assesses metals pollution and its threat to ecology from the mid-channel bar's (char) agricultural soil in the Damodar River basin, India. For this, the contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo), pollution index, and ecological risk index (RI) were measured on 60 soil samples at 30 stations (2 from each station, i.e., surface and sub-surface) in different parts of the mid-channel bar. The CF and EF indicate that both levels of char soil have low contamination and hence portray a higher potential for future enrichment by heavy metals. Moreover, Igeo portrays that soil samples are uncontaminated to moderately contaminated. Further, pollution indices indicate that all the samples (both levels) are unpolluted with a mean of 0.062 for surface soils and 0.048 for sub-surface soils. Both levels of the char have a low potentiality for ecological risk with an average RI of 0.20 for the surface soils and 0.19 for the sub-surface soils. Moreover, Technique for order preference by similarity to ideal solution (TOPSIS) indicates that the sub-surface soils have lower pollution than the surface soils. The geostatistical modeling reveals that the simple kriging technique was estimated as the most appropriate interpolation model. The present investigation exhibits that reduced heavy metal pollution is due to the sandy nature of soils and frequent flooding. However, the limited pollution is revealed due to the intensive agricultural practices on riverine chars. Therefore, this would be helpful to regional planners, agricultural engineers, and stakeholders in a basin area.
RESUMEN
Environmental flow is the minimum flow required in a fluvial system to maintain its ecological health and to promote socio-economic sustainability. The present work critically examines the concept of the environmental flow in the context of dams and development using a systematic methodology to find out the previous works published during the last 3 decades (1990-2020) in different search engines and websites. The study reviews that structural interventions in the form of dams, barrages, weirs, etc. impede the natural flow of the rivers. Moreover, other forms of development such as industrialization, urbanization, and expansion of modern agriculture also exacerbate the problems of environmental flow across the world, especially in monsoon Asia. The present case of the environmental flow for the Damodar River portrays that the construction of dams and barrages under the Damodar Valley Project have significantly altered the flow duration, flood frequency, and magnitude (high-frequency low magnitude events in the post-dam period), while urban-industrial growth in the basin has polluted the river water (e.g., lower dissolved oxygen and higher biological oxygen demand). This typical alteration in the flow characteristics and water quality has threatened aquatic organisms, especially fish diversity and community structure. This review will make the readers aware of the long-term result of dam-induced fluvial metamorphosis in the environment through the assessment of environmental flow, species diversity, flow fluctuation, and river pollution. The study may be useful for policy-making for ushering in the sustainable development pattern that will attract future researchers, planners, and stakeholders.