Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 3009-3029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562610

RESUMEN

Background: Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect. Methods: Cytotoxicity assays and cellular uptake of NPs by flow cytometry were performed in different breast cancer cells. Biodistribution and efficacy studies were performed in PDX models of breast cancer. Tumor associated immune cells were analyzed by multiparametric flow cytometry. Results: In vitro studies showed similar NP-induced cytotoxicity patterns despite difference in early NP internalization. On intravenous injection, the liver cleared the majority of NPs. Efficacy studies in the HBCx39 PDX model demonstrated an enhanced effect of drug-loaded PEBCA variants compared with free drug and PEHCA NPs. Furthermore, the folate conjugated PEBCA variant did not show any enhanced effects compared with the unconjugated counterpart which might be due to unfavorable orientation of folate on the NPs. Finally, analyses of the immune cell populations in tumors revealed that treatment with drug loaded PEBCA variants affected the myeloid cells, especially macrophages, contributing to an inflammatory, immune activated tumor microenvironment. Conclusion: We report for the first time, comparative efficacy of PEBCA and PEHCA NP variants in triple negative breast cancer models and show that CBZ-loaded PEBCA NPs exhibit a combined effect on tumor cells and on the tumor associated myeloid compartment, which may boost the anti-tumor response.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Taxoides , Humanos , Femenino , Portadores de Fármacos , Distribución Tisular , Cianoacrilatos , Neoplasias de la Mama/tratamiento farmacológico , Ácido Fólico , Línea Celular Tumoral , Microambiente Tumoral
2.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396974

RESUMEN

Endotoxin, a synonym for lipopolysaccharide (LPS), is anchored in the outer membranes of Gram-negative bacteria. Even minute amounts of LPS entering the circulatory system can have a lethal immunoactivating effect. Since LPS is omnipresent in the environment, it poses a great risk of contaminating any surface or solution, including research products and pharmaceuticals. Therefore, monitoring LPS contamination and taking preventive or decontamination measures to ensure human safety is of the utmost importance. Nevertheless, molecules used for endotoxin detection or inhibition often suffer from interferences, low specificity, and low affinity. For this reason, the selection of new binders that are biocompatible, easy to produce, and that can be used for biopharmaceutical applications, such as endotoxin removal, is of high interest. Powerful techniques for selecting LPS-binding molecules in vitro are display technologies. In this study, we established and compared the selection and production of LPS-specific, monoclonal, human single-chain variable fragments (scFvs) through two display methods: yeast and phage display. After selection, scFvs were fused to a human constant fragment crystallizable (Fc). To evaluate the applicability of the constructs, they were conjugated to polystyrene microbeads. Here, we focused on comparing the functionalized beads and their LPS removal capacity to a polyclonal anti-lipid A bead. Summarized, five different scFvs were selected through phage and yeast display, with binding properties comparable to a commercial polyclonal antibody. Two of the conjugated scFv-Fcs outperformed the polyclonal antibody in terms of the removal of LPS in aqueous solution, resulting in 265 times less residual LPS in solution, demonstrating the potential of display methods to generate LPS-specific binding molecules.


Asunto(s)
Bacteriófagos , Anticuerpos de Cadena Única , Humanos , Anticuerpos Monoclonales , Bacteriófagos/genética , Saccharomyces cerevisiae/metabolismo , Biblioteca de Péptidos , Endotoxinas , Lipopolisacáridos
3.
Front Immunol ; 14: 1290833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053995

RESUMEN

Helicobacter pylori is a widespread Gram-negative pathogen involved in a variety of gastrointestinal diseases, including gastritis, ulceration, mucosa-associated lymphoid tissue (MALT) lymphoma and gastric cancer. Immune responses aimed at eradication of H. pylori often prove futile, and paradoxically play a crucial role in the degeneration of epithelial integrity and disease progression. We have previously shown that H. pylori infection of primary human monocytes increases their potential to respond to subsequent bacterial stimuli - a process that may be involved in the generation of exaggerated, yet ineffective immune responses directed against the pathogen. In this study, we show that H. pylori-induced monocyte priming is not a common feature of Gram-negative bacteria, as Acinetobacter lwoffii induces tolerance to subsequent Escherichia coli lipopolysaccharide (LPS) challenge. Although the increased reactivity of H. pylori-infected monocytes seems to be specific to H. pylori, it appears to be independent of its virulence factors Cag pathogenicity island (CagPAI), cytotoxin associated gene A (CagA), vacuolating toxin A (VacA) and γ-glutamyl transferase (γ-GT). Utilizing whole-cell proteomics complemented with biochemical signaling studies, we show that H. pylori infection of monocytes induces a unique proteomic signature compared to other pro-inflammatory priming stimuli, namely LPS and the pathobiont A. lwoffii. Contrary to these tolerance-inducing stimuli, H. pylori priming leads to accumulation of NF-кB proteins, including p65/RelA, and thus to the acquisition of a monocyte phenotype more responsive to subsequent LPS challenge. The plasticity of pro-inflammatory responses based on abundance and availability of intracellular signaling molecules may be a heretofore underappreciated form of regulating innate immune memory as well as a novel facet of the pathobiology induced by H. pylori.


Asunto(s)
Helicobacter pylori , FN-kappa B , Humanos , FN-kappa B/metabolismo , Proteínas Bacterianas , Inmunidad Entrenada , Lipopolisacáridos/metabolismo , Proteómica
4.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36831382

RESUMEN

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by altered myeloid progenitor cell proliferation and differentiation. As in many other cancers, epigenetic transcriptional repressors such as histone deacetylases (HDACs) are dysregulated in AML. Here, we investigated (1) HDAC gene expression in AML patients and in different AML cell lines and (2) the effect of treating AML cells with the specific class IIA HDAC inhibitor TMP269, by applying proteomic and comparative bioinformatic analyses. We also analyzed cell proliferation, apoptosis, and the cell-killing capacities of TMP269 in combination with venetoclax compared to azacitidine plus venetoclax, by flow cytometry. Our results demonstrate significantly overexpressed class I and class II HDAC genes in AML patients, a phenotype which is conserved in AML cell lines. In AML MOLM-13 cells, TMP269 treatment downregulated a set of ribosomal proteins which are overexpressed in AML patients at the transcriptional level. TMP269 showed anti-proliferative effects and induced additive apoptotic effects in combination with venetoclax. We conclude that TMP269 exerts anti-leukemic activity when combined with venetoclax and has potential as a therapeutic drug in AML.

5.
Nanoscale ; 15(5): 2262-2275, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630186

RESUMEN

The incorporation of nanomaterials into consumer products has substantially increased in recent years, raising concerns about their safety. The inherent physicochemical properties of nanoparticles allow them to cross epithelial barriers and gain access to immunocompetent cells. Nanoparticles in cosmetic products can potentially interact with environmental allergens, forming a protein corona, and together penetrate through damaged skin. Allergen-nanoparticle interactions may influence the immune response, eventually resulting in an adverse or beneficial outcome in terms of allergic reactivity. This study determines the impact of silica nanoparticle-allergen interactions on allergic sensitization by studying the major molecular mechanisms affecting allergic responses. The major birch pollen allergen Bet v 1 was chosen as a model allergen and the birch pollen extract as a comparator. Key events in immunotoxicity including allergen uptake, processing, presentation, expression of costimulatory molecules and cytokine release were studied in human monocyte-derived dendritic cells. Using an in vivo sensitization model, murine Bet v 1-specific IgG and IgE levels were monitored. Upon the interaction of allergens with silica nanoparticles, we observed an enhanced uptake of the allergen by macropinocytosis, improved proteolytic processing, and presentation concomitant with a propensity to increase allergen-specific IgG2a and decrease IgE antibody levels. Together, these events suggest that upon nanoparticle interactions the immune response is biased towards a type 1 inflammatory profile, characterized by the upregulation of T helper 1 (Th1) cells. In conclusion, the interaction of the birch pollen allergen with silica nanoparticles will not worsen allergic sensitization, a state of type 2-inflammation, but rather seems to decrease it by skewing towards a Th1-dominated immune response.


Asunto(s)
Hipersensibilidad , Nanopartículas , Humanos , Animales , Ratones , Alérgenos/análisis , Alérgenos/química , Polen/efectos adversos , Polen/química , Antígenos de Plantas/análisis , Antígenos de Plantas/química , Células Presentadoras de Antígenos , Betula , Inmunoglobulina E/análisis
6.
Front Immunol ; 13: 1000996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248849

RESUMEN

Acute myeloid leukemia (AML) is a highly heterogeneous malignancy of the blood and bone marrow, characterized by clonal expansion of myeloid stem and progenitor cells and rapid disease progression. Chemotherapy has been the first-line treatment for AML for more than 30 years. Application of recent high-throughput next-generation sequencing technologies has revealed significant molecular heterogeneity to AML, which in turn has motivated efforts to develop new, targeted therapies. However, due to the high complexity of this disease, including multiple driver mutations and the coexistence of multiple competing tumorigenic clones, the successful incorporation of these new agents into clinical practice remains challenging. These continuing difficulties call for the identification of innovative therapeutic approaches that are effective for a larger cohort of AML patients. Recent studies suggest that chronic immune stimulation and aberrant cytokine signaling act as triggers for AML initiation and progression, facets of the disease which might be exploited as promising targets in AML treatment. However, despite the greater appreciation of cytokine profiles in AML, the exact functions of cytokines in AML pathogenesis are not fully understood. Therefore, unravelling the molecular basis of the complex cytokine networks in AML is a prerequisite to develop new therapeutic alternatives based on targeting cytokines and their receptors.


Asunto(s)
Leucemia Mieloide Aguda , Médula Ósea/metabolismo , Carcinogénesis/patología , Células Clonales/metabolismo , Citocinas/metabolismo , Humanos , Leucemia Mieloide Aguda/patología
7.
Bioconjug Chem ; 33(8): 1505-1514, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35852911

RESUMEN

Sodium citrate-stabilized gold nanoparticles (AuNPs) are destabilized when dispersed in cell culture media (CCMs). This may promote their aggregation and subsequent sedimentation, or under the proper conditions, their interaction with dispersed proteins can lead to the formation of a NP-stabilizing protein corona. CCMs are ionic solutions that contain growth substances which are typically supplemented, in addition to serum, with different substances such as dyes, antioxidants, and antibiotics. In this study, the impact of phenol red, penicillin-streptomycin, l-glutamine, and ß-mercaptoethanol on the formation of the NP-protein corona in CCMs was investigated. Similar protein coronas were obtained except in the presence of antibiotics. Under these conditions, the protein corona took more time to be formed, and its density and composition were altered, as indicated by UV-vis spectroscopy, Z potential, dynamic light scattering, and liquid chromatography-mass spectrometry analyses. As a consequence of these modifications, a significantly different AuNP cellular uptake was measured, showing that NP uptake increased as did the NP aggregate formation. AuNP uptake studies performed in the presence of clathrin- and caveolin-mediated endocytosis inhibitors showed that neither clathrin receptors nor lipid rafts were significantly involved in the internalization mechanism. These results suggest that in these conditions, NP aggregation is the main mechanism responsible for their cellular uptake.


Asunto(s)
Nanopartículas del Metal , Corona de Proteínas , Antibacterianos , Técnicas de Cultivo de Célula , Citratos/química , Ácido Cítrico , Clatrina , Oro/química , Nanopartículas del Metal/química , Corona de Proteínas/metabolismo
8.
Pharmaceutics ; 14(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35631689

RESUMEN

Silica nanoparticles (SiNPs) are generally regarded as safe and may represent an attractive carrier platform for nanomedical applications when loaded with biopharmaceuticals. Surface functionalization by different chemistries may help to optimize protein loading and may further impact uptake into the targeted tissues or cells, however, it may also alter the immunologic profile of the carrier system. In order to circumvent side effects, novel carrier candidates need to be tested thoroughly, early in their development stage within the pharmaceutical innovation pipeline, for their potential to activate or modify the immune response. Previous studies have identified surface functionalization by different chemistries as providing a plethora of modifications for optimizing efficacy of biopharmaceutical (nano)carrier platforms while maintaining an acceptable safety profile. In this study, we synthesized SiNPs and chemically functionalized them to obtain different surface characteristics to allow their application as a carrier system for allergen-specific immunotherapy. In the present study, crude natural allergen extracts are used in combination with alum instead of well-defined active pharmaceutical ingredients (APIs), such as recombinant allergen, loaded onto (nano)carrier systems with immunologically inert and stable properties in suspension. This study was motivated by the hypothesis that comparing different charge states could allow tailoring of the binding capacity of the particulate carrier system, and hence the optimization of biopharmaceutical uptake while maintaining an acceptable safety profile, which was investigated by determining the maturation of human antigen-presenting cells (APCs). The functionalized nanoparticles were characterized for primary and hydrodynamic size, polydispersity index, zeta potential, endotoxin contamination. As potential candidates for allergen-specific immunotherapy, the differently functionalized SiNPs were non-covalently coupled with a highly purified, endotoxin-free recombinant preparation of the major birch pollen allergen Bet v 1 that functioned for further immunological testing. Binding efficiencies of allergen to SiNPs was controlled to determine uptake of API. For efficacy and safety assessment, we employed human monocyte-derived dendritic cells as model for APCs to detect possible differences in the particles' APC maturation potential. Functionalization of SiNP did not affect the viability of APCs, however, the amount of API physisorbed onto the nanocarrier system, which induced enhanced uptake, mainly by macropinocytosis. We found slight differences in the maturation state of APCs for the differently functionalized SiNP-API conjugates qualifying surface functionalization as an effective instrument for optimizing the immune response towards SiNPs. This study further suggests that surface-functionalized SiNPs could be a suitable, immunologically inert vehicle for the efficient delivery of biopharmaceutical products, as evidenced here for allergen-specific immunotherapy.

9.
Curr Opin Immunol ; 76: 102208, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35569416

RESUMEN

Chronic infections are typically characterized by an ineffective immune response to the inducing pathogen. While failing to clear the infectious microbe, the provoked inflammatory processes may cause severe tissue damage culminating in functional impairment of the affected organ. The human pathogen Helicobacter pylori is a uniquely successful Gram-negative microorganism inhabiting the gastric mucosa in approximately 50% of the world's population. This bacterial species has evolved spectacular means of evading immune surveillance and influencing host immunity, leading to a fragile equilibrium between proinflammatory and anti-inflammatory signals, the breakdown of which can have serious consequences for the host, including gastric ulceration and cancer. This review highlights novel insights into this delicate interaction between host and pathogen from an immunological perspective.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Epitelio/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Humanos , Inmunidad
10.
Nutrients ; 14(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35405985

RESUMEN

(1) Background: Posttranslational protein modifications have been demonstrated to change protein allergenicity. Previously, it was reported that pretreatment with highly nitrated food proteins induced a tolerogenic immune response in an experimental mouse model and in human immune cells. Here, we investigated a possible therapeutic effect of modified proteins and evaluated the safety of oral exposure to highly nitrated proteins in an experimental food allergy model. (2) Methods: BALB/c mice were orally sensitized towards ovalbumin (OVA) under gastric acid suppression. Thereafter, treatment via intragastric gavage with maximally nitrated OVA (nOVAmax) and OVA as a control was performed six times every 2 weeks. On the last day of experiments, all the treated mice were orally challenged with OVA. Systemic anaphylactic reaction was determined by measuring the core body temperature. Moreover, antibody levels, regulatory T cell numbers, cytokine levels and histology of antrum tissues were analyzed. (3) Results: After oral immunotherapy, OVA-specific IgE titers were decreased while IgG1 titers were significantly elevated in the mice receiving OVA. After oral challenge with OVA, nOVAmax-treated allergic animals showed no drop of the core body temperature, which was observed for OVA-allergic and OVA-treated allergic animals. Significantly fewer eosinophils and mast cells were found in the gastric mucosa of the allergic mice after nOVAmax treatment. (4) Conclusions: Oral immunotherapy with nOVAmax reduced allergic reactions upon allergen exposure and the number of allergen effector cells in the gastric mucosa. Thus, maximally nitrated allergens enabled an efficient and safe treatment for food allergy in our experimental model.


Asunto(s)
Hipersensibilidad a los Alimentos , Alérgenos , Animales , Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos/terapia , Factores Inmunológicos , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Ovalbúmina
11.
Front Immunol ; 13: 847958, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309333

RESUMEN

Infection with Helicobacter pylori (H. pylori) affects almost half of the world's population and is a major cause of stomach cancer. Although immune cells react strongly to this gastric bacterium, H. pylori is still one of the rare pathogens that can evade elimination by the host and cause chronic inflammation. In the present study, we characterized the inflammatory response of primary human monocytes to repeated H. pylori infection and their responsiveness to an ensuing bacterial stimulus. We show that, although repeated stimulations with H. pylori do not result in an enhanced response, H. pylori-primed monocytes are hyper-responsive to an Escherichia coli-lipopolysaccharide (LPS) stimulation that takes place shortly after infection. This hyper-responsiveness to bacterial stimuli is observed upon infection with viable H. pylori only, while heat-killed H. pylori fails to boost both cytokine secretion and STAT activation in response to LPS. When the secondary challenge occurs several days after the primary infection with live bacteria, H. pylori-infected monocytes lose their hyper-responsiveness. The observation that H. pylori makes primary human monocytes more susceptible to subsequent/overlapping stimuli provides an important basis to better understand how H. pylori can maintain chronic inflammation and thus contribute to gastric cancer progression.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Inmunidad , Inflamación/complicaciones , Lipopolisacáridos/farmacología , Monocitos
13.
Front Immunol ; 12: 751683, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804037

RESUMEN

Innate immune memory, the ability of innate cells to react in a more protective way to secondary challenges, is induced by exposure to infectious and other exogeous and endogenous agents. Engineered nanoparticles are particulate exogenous agents that, as such, could trigger an inflammatory reaction in monocytes and macrophages and could therefore be also able to induce innate memory. Here, we have evaluated the capacity of engineered gold nanoparticles (AuNPs) to induce a memory response or to modulate the memory responses induced by microbial agents. Microbial agents used were in soluble vs. particulate form (MDP and the gram-positive bacteria Staphylococcus aureus; ß-glucan and the ß-glucan-producing fungi C. albicans), and as whole microrganisms that were either killed (S. aureus, C. albicans) or viable (the gram-negative bacteria Helicobacter pylori). The memory response was assessed in vitro, by exposing human primary monocytes from 2-7 individual donors to microbial agents with or without AuNPs (primary response), then resting them for 6 days to allow return to baseline, and eventually challenging them with LPS (secondary memory response). Primary and memory responses were tested as production of the innate/inflammatory cytokine TNFα and other inflammatory and anti-inflammatory factors. While inactive on the response induced by soluble microbial stimuli (muramyl dipeptide -MDP-, ß-glucan), AuNPs partially reduced the primary response induced by whole microorganisms. AuNPs were also unable to directly induce a memory response but could modulate stimulus-induced memory in a circumscribed fashion, limited to some agents and some cytokines. Thus, the MDP-induced tolerance in terms of TNFα production was further exacerbated by co-priming with AuNPs, resulting in a less inflammatory memory response. Conversely, the H. pylori-induced tolerance was downregulated by AuNPs only relative to the anti-inflammatory cytokine IL-10, which would lead to an overall more inflammatory memory response. These effects of AuNPs may depend on a differential interaction/association between the reactive particle surfaces and the microbial components and agents, which may lead to a change in the exposure profiles. As a general observation, however, the donor-to-donor variability in memory response profiles and reactivity to AuNPs was substantial, suggesting that innate memory depends on the individual history of exposures.


Asunto(s)
Candida albicans , Oro/administración & dosificación , Helicobacter pylori , Memoria Inmunológica/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Monocitos/efectos de los fármacos , Staphylococcus aureus , beta-Glucanos/farmacología , Células Cultivadas , Citocinas/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Monocitos/inmunología , Monocitos/microbiología
14.
Nanoscale ; 13(16): 7648-7666, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33928963

RESUMEN

Dendritic cells (DCs) shape immune responses by influencing T-cell activation. Thus, they are considered both an interesting model for studying nano-immune interactions and a promising target for nano-based biomedical applications. However, the accentuated ability of nanoparticles (NPs) to interact with biomolecules may have an impact on DC function that poses an unexpected risk of unbalanced immune reactions. Here, we investigated the potential effects of gold nanoparticles (AuNPs) on DC function and the consequences for effector and memory T-cell responses in the presence of the microbial inflammatory stimulus lipopolysaccharide (LPS). Overall, we found that, in the absence of LPS, none of the tested NPs induced a DC response. However, whereas 4-, 8-, and 11 nm AuNPs did not modulate LPS-dependent immune responses, 26 nm AuNPs shifted the phenotype of LPS-activated DCs toward a tolerogenic state, characterized by downregulation of CD86, IL-12 and IL-27, upregulation of ILT3, and induction of class E compartments. Moreover, this DC phenotype was less proficient in promoting Th1 activation and central memory T-cell proliferation. Taken together, these findings support the perception that AuNPs are safe under homeostatic conditions; however, particular care should be taken in patients experiencing a current infection or disorders of the immune system.


Asunto(s)
Oro , Nanopartículas del Metal , Células Dendríticas , Humanos , Lipopolisacáridos , Nanopartículas del Metal/toxicidad , Fenotipo
15.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525345

RESUMEN

Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1ß is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia.


Asunto(s)
Carcinogénesis/inmunología , Inflamasomas/inmunología , Inflamación/inmunología , Leucemia/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Alarminas/genética , Alarminas/inmunología , Animales , Autofagia/genética , Autofagia/inmunología , Carcinogénesis/genética , Carcinogénesis/patología , Progresión de la Enfermedad , Regulación Leucémica de la Expresión Génica , Humanos , Inmunidad Innata , Inflamasomas/genética , Inflamación/complicaciones , Inflamación/genética , Inflamación/patología , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Leucemia/etiología , Leucemia/genética , Leucemia/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Piroptosis/genética , Piroptosis/inmunología , Transducción de Señal
16.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35008838

RESUMEN

Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease expressed during group A streptococcal infection that represents a major virulence factor. Although subject to several studies, its role during infection is still under debate, and its proteolytic properties remain insufficiently characterized. Here, we revisited this protease through a set of complementary approaches relying on state of-the-art HPLC-MS methods. After conceiving an efficient protocol to recombinantly express SpeB, the zymogen of the protease and its activation were characterized. Employing proteome-derived peptide libraries, a strong preference for hydrophobic and aromatic residues at P2 alongside negatively charged amino acids at P3' to P6' was revealed. To identify relevant in vivo substrates, native proteins were obtained from monocytic secretome and plasma to assess their cleavage under physiological conditions. Besides corroborating our findings concerning specificity, more than 200 cleaved proteins were identified, including proteins of the extracellular matrix, proteins of the immune system, and proteins involved in inflammation. Finally, the cleavage of IgG subclasses was studied in detail. This study precisely depicts the proteolytic properties of SpeB and provides a library of potential host substrates, including their exact cleavage positions, as a valuable source for further research to unravel the role of SpeB during streptococcal infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Exotoxinas/metabolismo , Espectrometría de Masas , Proteolisis , Streptococcus pyogenes/metabolismo , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Escherichia coli/metabolismo , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
17.
Eur J Immunol ; 51(1): 191-196, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32648940

RESUMEN

Interleukin-31 (IL-31) is a Th2 cell-derived cytokine that has been closely linked to pruritic skin inflammation. More recently, enhanced IL-31 serum levels have also been observed in patients with allergic rhinitis and allergic asthma. Therefore, the main aim of this study was to unravel the contribution of IL-31 to allergen-induced lung inflammation. We analyzed lung inflammation in response to the timothy grass (Phleum pratense) pollen allergen Phl p 5 in C57BL/6 wild-type (wt) mice, IL-31 transgenic (IL-31tg) mice, and IL-31 receptor alpha-deficient animals (IL-31RA-/- ). IL-31 and IL-31RA levels were monitored by qRT-PCR. Cellular infiltrate in bronchoalveolar lavage fluid (BALF) and lung tissue inflammation, mucus production as well as epithelial thickness were measured by flow cytometry and histomorphology. While allergen challenge induced IL-31RA expression in lung tissue of wt and IL-31tg mice, high IL-31 expression was exclusively observed in lung tissue of IL-31tg mice. Upon Phl p 5 challenge, IL-31tg mice showed reduced numbers of leukocytes and eosinophils in BALF and lung tissue as well as diminished mucin expression and less pronounced epithelial thickening compared to IL-31RA-/- or wt animals. These findings suggest that the IL-31/IL-31RA axis may regulate local, allergen-induced inflammation in the lungs.


Asunto(s)
Alérgenos/efectos adversos , Alérgenos/inmunología , Interleucinas/inmunología , Proteínas de Plantas/efectos adversos , Proteínas de Plantas/inmunología , Neumonía/inmunología , Animales , Asma/etiología , Asma/inmunología , Asma/prevención & control , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Femenino , Interleucinas/genética , Leucocitos/inmunología , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Phleum/efectos adversos , Phleum/inmunología , Neumonía/etiología , Neumonía/prevención & control , Polen/efectos adversos , Polen/inmunología , Receptores de Interleucina/deficiencia , Receptores de Interleucina/genética , Receptores de Interleucina/inmunología
18.
Allergy ; 76(1): 210-222, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32621318

RESUMEN

BACKGROUND: Allergen-specific immunotherapy via the skin targets a tissue rich in antigen-presenting cells, but can be associated with local and systemic side effects. Allergen-polysaccharide neoglycogonjugates increase immunization efficacy by targeting and activating dendritic cells via C-type lectin receptors and reduce side effects. OBJECTIVE: We investigated the immunogenicity, allergenicity, and therapeutic efficacy of laminarin-ovalbumin neoglycoconjugates (LamOVA). METHODS: The biological activity of LamOVA was characterized in vitro using bone marrow-derived dendritic cells. Immunogenicity and therapeutic efficacy were analyzed in BALB/c mice. Epicutaneous immunotherapy (EPIT) was performed using fractional infrared laser ablation to generate micropores in the skin, and the effects of LamOVA on blocking IgG, IgE, cellular composition of BAL, lung, and spleen, lung function, and T-cell polarization were assessed. RESULTS: Conjugation of laminarin to ovalbumin reduced its IgE binding capacity fivefold and increased its immunogenicity threefold in terms of IgG generation. EPIT with LamOVA induced significantly higher IgG levels than OVA, matching the levels induced by s.c. injection of OVA/alum (SCIT). EPIT was equally effective as SCIT in terms of blocking IgG induction and suppression of lung inflammation and airway hyperresponsiveness, but SCIT was associated with higher levels of therapy-induced IgE and TH2 cytokines. EPIT with LamOVA induced significantly lower local skin reactions during therapy compared to unconjugated OVA. CONCLUSION: Conjugation of ovalbumin to laminarin increased its immunogenicity while at the same time reducing local side effects. LamOVA EPIT via laser-generated micropores is safe and equally effective compared to SCIT with alum, without the need for adjuvant.


Asunto(s)
Asma , Neumonía , beta-Glucanos , Alérgenos , Animales , Asma/terapia , Rayos Láser , Ratones , Ratones Endogámicos BALB C , Ovalbúmina
19.
Front Immunol ; 11: 1824, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013833

RESUMEN

Introduction: Understanding, which factors determine the immunogenicity and immune polarizing properties of proteins, is an important prerequisite for designing better vaccines and immunotherapeutics. While extrinsic immune modulatory factors such as pathogen associated molecular patterns are well-understood, far less is known about the contribution of protein inherent features. Protein fold-stability represents such an intrinsic feature contributing to immunogenicity and immune polarization by influencing the amount of peptide-MHC II complexes (pMHCII). Here, we investigated how modulation of the fold-stability of the grass pollen allergen Phl p 6 affects its ability to stimulate immune responses and T cell polarization. Methods: MAESTRO software was used for in silico prediction of stabilizing or destabilizing point mutations. Mutated proteins were expressed in E. coli, and their thermal stability and resistance to endolysosomal proteases was determined. Resulting peptides were analyzed by mass spectrometry. The structure of the most stable mutant protein was assessed by X-ray crystallography. We evaluated the capacity of the mutants to stimulate T cell proliferation in vitro, as well as antibody responses and T cell polarization in vivo in an adjuvant-free BALB/c mouse model. Results: In comparison to wild-type protein, stabilized or destabilized mutants displayed changes in thermal stability ranging from -5 to +14°. While highly stabilized mutants were degraded very slowly, destabilization led to faster proteolytic processing in vitro. This was confirmed in BMDCs, which processed and presented the immunodominant epitope from a destabilized mutant more efficiently compared to a highly stable mutant. In vivo, stabilization resulted in a shift in immune polarization from TH2 to TH1/TH17 as indicated by higher levels of IgG2a and increased secretion of TNF-α, IFN-γ, IL-17, and IL-21. Conclusion: MAESTRO software was very efficient in detecting single point mutations that increase or reduce fold-stability. Thermal stability correlated well with the speed of proteolytic degradation and presentation of peptides on the surface of dendritic cells in vitro. This change in processing kinetics significantly influenced the polarization of T cell responses in vivo. Modulating the fold-stability of proteins thus has the potential to optimize and polarize immune responses, which opens the door to more efficient design of molecular vaccines.


Asunto(s)
Alérgenos/química , Alérgenos/genética , Alérgenos/inmunología , Presentación de Antígeno/inmunología , Simulación por Computador , Activación de Linfocitos/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Animales , Células Dendríticas/inmunología , Ratones , Ratones Endogámicos BALB C , Mutación Puntual , Pliegue de Proteína , Estabilidad Proteica , Linfocitos T/inmunología
20.
Cell Commun Signal ; 18(1): 160, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023610

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) is a gram-negative bacterium that chronically infects approximately 50% of the world's human population. While in most cases the infection remains asymptomatic, 10% of infected individuals develop gastric pathologies and 1-3% progress to gastric cancer. Although H. pylori induces severe inflammatory responses, the host's immune system fails to clear the pathogen and H. pylori can persist in the human stomach for decades. As suppressor of cytokine signaling (SOCS) proteins are important feedback regulators limiting inflammatory responses, we hypothesized that H. pylori could modulate the host's immune responses by inducing SOCS expression. METHODS: The phenotype of human monocyte-derived DCs (moDCs) infected with H. pylori was analyzed by flow cytometry and multiplex technology. SOCS expression levels were monitored by qPCR and signaling studies were conducted by means of Western blot. For functional studies, RNA interference-based silencing of SOCS1-3 and co-cultures with CD4+ T cells were performed. RESULTS: We show that H. pylori positive gastritis patients express significantly higher SOCS3, but not SOCS1 and SOCS2, levels compared to H. pylori negative patients. Moreover, infection of human moDCs with H. pylori rapidly induces SOCS3 expression, which requires the type IV secretion system (T4SS), release of TNFα, and signaling via the MAP kinase p38, but appears to be independent of TLR2, TLR4, MEK1/2 and STAT proteins. Silencing of SOCS3 expression in moDCs prior to H. pylori infection resulted in increased release of both pro- and anti-inflammatory cytokines, upregulation of PD-L1, and decreased T-cell proliferation. CONCLUSIONS: This study shows that H. pylori induces SOCS3 via an autocrine loop involving the T4SS and TNFα and p38 signaling. Moreover, we demonstrate that high levels of SOCS3 in DCs dampen PD-L1 expression on DCs, which in turn drives T-cell proliferation. Video Abstract.


Asunto(s)
Sistemas de Secreción Bacterianos , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Helicobacter pylori/fisiología , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Antígenos Bacterianos/metabolismo , Antígeno B7-H1/metabolismo , Proteínas Bacterianas/metabolismo , Proliferación Celular , Quimiocinas/metabolismo , Retroalimentación Fisiológica , Infecciones por Helicobacter/metabolismo , Humanos , Quinasas Janus/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Monocitos/metabolismo , Mutación/genética , Fosforilación , Transducción de Señal , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA