Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Biol Chem ; 300(8): 107505, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944122

RESUMEN

Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.


Asunto(s)
Proteínas Arqueales , Lisina , Thermococcus , Thermococcus/metabolismo , Thermococcus/genética , Thermococcus/enzimología , Lisina/metabolismo , Lisina/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/química , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Archaea/metabolismo , ARN de Archaea/genética , ARN de Archaea/química , Guanina/metabolismo , Guanina/química , Guanina/análogos & derivados , Especificidad por Sustrato , Cinética , Nucleósidos/metabolismo , Nucleósidos/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Guanosina/análogos & derivados
2.
RNA ; 30(6): 710-727, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38423625

RESUMEN

All kinds of RNA molecules can be produced by in vitro transcription using T7 RNA polymerase using DNA templates obtained by solid-phase chemical synthesis, primer extension, PCR, or DNA cloning. The oligonucleotide design, however, is a challenge to nonexperts as this relies on a set of rules that have been established empirically over time. Here, we describe a Python program to facilitate the rational design of oligonucleotides, calculated with kinetic parameters for enhanced in vitro transcription (ROCKET). The Python tool uses thermodynamic parameters, performs folding-energy calculations, and selects oligonucleotides suitable for the polymerase extension reaction. These oligonucleotides improve yields of template DNA. With the oligonucleotides selected by the program, the tRNA transcripts can be prepared by a one-pot reaction of the DNA polymerase extension reaction and the transcription reaction. Also, the ROCKET-selected oligonucleotides provide greater transcription yields than that from oligonucleotides selected by Primerize, a leading software for designing oligonucleotides for in vitro transcription, due to the enhancement of template DNA synthesis. Apart from over 50 tRNA genes tested, an in vitro transcribed self-cleaving ribozyme was found to have catalytic activity. In addition, the program can be applied to the synthesis of mRNA, demonstrating the wide applicability of the ROCKET software.


Asunto(s)
Oligonucleótidos , Programas Informáticos , Transcripción Genética , Oligonucleótidos/química , Oligonucleótidos/genética , Oligonucleótidos/síntesis química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Catalítico/química , Termodinámica , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Cinética , ARN Mensajero/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Methods Enzymol ; 692: 69-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37925188

RESUMEN

Transfer RNA (tRNA) delivers amino acids to the ribosome and functions as an essential adapter molecule for decoding codons on the messenger RNA (mRNA) during protein synthesis. Before attaining their proper activity, tRNAs undergo multiple post-transcriptional modifications with highly diversified roles such as stabilization of the tRNA structure, recognition of aminoacyl tRNA synthetases, precise codon-anticodon recognition, support of viral replication and onset of immune responses. The synthesis of the majority of modified nucleosides is catalyzed by a site-specific tRNA modification enzyme. This chapter provides a detailed protocol for using mutational profiling to analyze the enzymatic function of a tRNA methyltransferase in a high-throughput manner. In a previous study, we took tRNA m1A22 methyltransferase TrmK from Geobacillus stearothermophilus as a model tRNA methyltransferase and applied this protocol to gain mechanistic insights into how TrmK recognizes the substrate tRNAs. In theory, this protocol can be used unaltered for studying enzymes that catalyze modifications at the Watson-Crick face such as 1-methyladenosine (m1A), 3-methylcytosine (m3C), 3-methyluridine (m3U), 1-methylguanosine (m1G), and N2,N2-dimethylguanosine (m22G).


Asunto(s)
Anticodón , ARN de Transferencia , ARN de Transferencia/metabolismo , Codón/genética , Biosíntesis de Proteínas , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/química , ARNt Metiltransferasas/metabolismo
4.
J Biochem ; 175(1): 43-56, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37844264

RESUMEN

TrmH is a eubacterial tRNA methyltransferase responsible for formation of 2'-O-methylguaosine at position 18 (Gm18) in tRNA. In Escherichia coli cells, only 14 tRNA species possess the Gm18 modification. To investigate the substrate tRNA selection mechanism of E. coli TrmH, we performed biochemical and structural studies. Escherichia coli TrmH requires a high concentration of substrate tRNA for efficient methylation. Experiments using native tRNA SerCGA purified from a trmH gene disruptant strain showed that modified nucleosides do not affect the methylation. A gel mobility-shift assay reveals that TrmH captures tRNAs without distinguishing between relatively good and very poor substrates. Methylation assays using wild-type and mutant tRNA transcripts revealed that the location of G18 in the D-loop is very important for efficient methylation by E. coli TrmH. In the case of tRNASer, tRNATyrand tRNALeu, the D-loop structure formed by interaction with the long variable region is important. For tRNAGln, the short distance between G18 and A14 is important. Thus, our biochemical study explains all Gm18 modification patterns in E. coli tRNAs. The crystal structure of E. coli TrmH has also been solved, and the tRNA binding mode of E. coli TrmH is discussed based on the structure.


Asunto(s)
Escherichia coli , Metiltransferasas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metilación , ARNt Metiltransferasas/química , ARN de Transferencia/química , Conformación de Ácido Nucleico
5.
Genes (Basel) ; 14(2)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36833309

RESUMEN

The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase (THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the THUMP domain more than two decades ago, many tRNA modification enzymes containing the THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase, methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review, I focus on the functions and structures of these tRNA modification enzymes and the modified nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the THUMP domain captures the 3'-end of RNA (in the case of tRNA, the CCA-terminus). However, in some cases, this concept is not simply applicable given the modification patterns observed in tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA modification enzymes, are involved in numerous biological phenomena, and the defects of genes for human THUMP-related proteins are implicated in genetic diseases. In this review, these biological phenomena are also introduced.


Asunto(s)
Metiltransferasas , Tiouridina , Humanos , Tiouridina/metabolismo , Nucleósidos , Ligasas , ARN de Transferencia/genética , ARN
6.
RNA ; 29(2): 241-251, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36411056

RESUMEN

4-Thiouridine (s4U) is a modified nucleoside, found at positions 8 and 9 in tRNA from eubacteria and archaea. Studies of the biosynthetic pathway and physiological role of s4U in tRNA are ongoing in the tRNA modification field. s4U has also recently been utilized as a biotechnological tool for analysis of RNAs. Therefore, a selective and sensitive system for the detection of s4U is essential for progress in the fields of RNA technologies and tRNA modification. Here, we report the use of biotin-coupled 2-aminoethyl-methanethiosulfonate (MTSEA biotin-XX) for labeling of s4U and demonstrate that the system is sensitive and quantitative. This technique can be used without denaturation; however, addition of a denaturation step improves the limit of detection. Thermus thermophilus tRNAs, which abundantly contain 5-methyl-2-thiouridine, were tested to investigate the selectivity of the MTSEA biotin-XX s4U detection system. The system did not react with 5-methyl-2-thiouridine in tRNAs from a T. thermophilus tRNA 4-thiouridine synthetase (thiI) gene deletion strain. Thus, the most useful advantage of the MTSEA biotin-XX s4U detection system is that MTSEA biotin-XX reacts only with s4U and not with other sulfur-containing modified nucleosides such as s2U derivatives in tRNAs. Furthermore, the MTSEA biotin-XX s4U detection system can analyze multiple samples in a short time span. The MTSEA biotin-XX s4U detection system can also be used for the analysis of s4U formation in tRNA. Finally, we demonstrate that the MTSEA biotin-XX system can be used to visualize newly transcribed tRNAs in S. cerevisiae cells.


Asunto(s)
ARN , Tiouridina , ARN/metabolismo , Saccharomyces cerevisiae/genética , Biotina/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
7.
J Biol Chem ; 299(1): 102759, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462666

RESUMEN

Transfer RNAs undergo diverse posttranscriptional modifications to regulate a myriad of cellular events including translation, stress response, and viral replication. These posttranscriptional modifications are synthesized by site-specific modification enzymes. Recent RNA-seq techniques have revealed multiple features of tRNA such as tRNA abundance, tRNA modification, and tRNA structure. Here, we adapt a tRNA-sequencing technique and design a new functional analysis where we perform mutational profiling of tRNA modifications to gain mechanistic insights into how tRNA modification enzymes recognize substrate tRNA. Profiling of Geobacillus stearothermophilus tRNAs and protein orthology analysis predict the existence of natural modifications in 44 tRNA molecular species of G. stearothermophilus. We selected the 1-methyladenosine modification at position 22 (m1A22) and tRNA (m1A22) methyltransferase (TrmK) for further analysis. Relative quantification of m1A22 levels in 59 tRNA transcripts by mutational profiling reveals that TrmK selectively methylates a subset of tRNAs. Using 240 variants of tRNALeu transcripts, we demonstrate the conserved nucleosides including U8, A14, G15, G18, G19, U55, Purine57, and A58 are important for the methyl transfer reaction of TrmK. Additional biochemical experiments reveal that TrmK strictly recognizes U8, A14, G18, and U55 in tRNA. Furthermore, these findings from tRNALeu variants were crossvalidated using variants of three different tRNA species. Finally, a model of the TrmK-tRNA complex structure was constructed based on our findings and previous biochemical and structural studies by others. Collectively, our study expands functional analyses of tRNA modification enzyme in a high-throughput manner where our assay rapidly identifies substrates from a large pool of tRNAs.


Asunto(s)
Metiltransferasas , ARNt Metiltransferasas , Metiltransferasas/genética , Mutación , ARN de Transferencia/metabolismo , ARN de Transferencia de Leucina , ARNt Metiltransferasas/química , Bacillaceae/genética , Bacillaceae/metabolismo
8.
Front Mol Biosci ; 9: 811548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35445080

RESUMEN

RNA ligases play important roles in repairing and circularizing RNAs post-transcriptionally. In this study, we generated an allelic knockout of ATP-dependent RNA ligase (Rnl) in the hyperthermophilic archaeon Thermococcus kodakarensis to identify its biological targets. A comparative analysis of circular RNA reveals that the Rnl-knockout strain represses circularization of C/D box sRNAs without affecting the circularization of tRNA and rRNA processing intermediates. Recombinant archaeal Rnl could circularize C/D box sRNAs with a mutation in the conserved C/D box sequence element but not when the terminal stem structures were disrupted, suggesting that proximity of the two ends could be critical for intramolecular ligation. Furthermore, T. kodakarensis accumulates aberrant RNA fragments derived from ribosomal RNA in the absence of Rnl. These results suggest that Rnl is responsible for C/D box sRNA circularization and may also play a role in ribosomal RNA processing.

9.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35409407

RESUMEN

The Saccharomyces cerevisiae Trm11 and Trm112 complex (Trm11-Trm112) methylates the 2-amino group of guanosine at position 10 in tRNA and forms N2-methylguanosine. To determine the elements required in tRNA for methylation by Trm11-Trm112, we prepared 60 tRNA transcript variants and tested them for methylation by Trm11-Trm112. The results show that the precursor tRNA is not a substrate for Trm11-Trm112. Furthermore, the CCA terminus is essential for methylation by Trm11-Trm112, and Trm11-Trm112 also only methylates tRNAs with a regular-size variable region. In addition, the G10-C25 base pair is required for methylation by Trm11-Trm112. The data also demonstrated that Trm11-Trm112 recognizes the anticodon-loop and that U38 in tRNAAla acts negatively in terms of methylation. Likewise, the U32-A38 base pair in tRNACys negatively affects methylation. The only exception in our in vitro study was tRNAValAAC1. Our experiments showed that the tRNAValAAC1 transcript was slowly methylated by Trm11-Trm112. However, position 10 in this tRNA was reported to be unmodified G. We purified tRNAValAAC1 from wild-type and trm11 gene deletion strains and confirmed that a portion of tRNAValAAC1 is methylated by Trm11-Trm112 in S. cerevisiae. Thus, our study explains the m2G10 modification pattern of all S. cerevisiae class I tRNAs and elucidates the Trm11-Trm112 binding sites.


Asunto(s)
Metiltransferasas , Proteínas de Saccharomyces cerevisiae , Guanina/metabolismo , Metilación , Metiltransferasas/metabolismo , Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Valina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
11.
J Biochem ; 168(3): 273-283, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32289169

RESUMEN

The solid-phase DNA probe method is a well-established technique for tRNA purification. We have applied this method for purification and analysis of other non-coding RNAs. Three columns for purification of tRNAPhe, transfer-messenger RNA (tmRNA) and 16S rRNA from Thermus thermophilus were connected in tandem and purifications were performed. From each column, tRNAPhe, tmRNA and 16S rRNA could be purified in a single step. This is the first report of purification of native tmRNA from T. thermophilus and the purification demonstrates that the solid-phase DNA probe method is applicable to non-coding RNA, which is present in lower amounts than tRNA. Furthermore, if a long non-coding RNA is cleaved site-specifically and the fragment can be purified by the solid-phase DNA probe method, modified nucleosides in the long non-coding RNA can be analysed. Therefore, we designed a deoxyribozyme (DNAzyme) to perform site-specific cleavage of 16S rRNA, examined optimum conditions and purified the resulting RNA fragment. Sequencing of complimentary DNA and mass spectrometric analysis revealed that the purified RNA corresponded to the targeted fragment of 16S rRNA. Thus, the combination of DNAzyme cleavage and purification using solid-phase DNA probe methodology can be a useful technique for analysis of modified nucleosides in long non-coding RNAs.


Asunto(s)
Sondas de ADN , ADN Catalítico/metabolismo , División del ARN , ARN Bacteriano/aislamiento & purificación , ARN Largo no Codificante/análisis , ARN Ribosómico 16S/aislamiento & purificación , ARN de Transferencia/aislamiento & purificación , Thermus thermophilus/química , Secuencia de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Nucleósidos/análisis , ARN de Transferencia/química
12.
Nat Chem Biol ; 15(12): 1148-1155, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740832

RESUMEN

Archaeosine (G+), 7-formamidino-7-deazaguanosine, is an archaea-specific modified nucleoside found at the 15th position of tRNAs. In Euryarchaeota, 7-cyano-7-deazaguanine (preQ0)-containing tRNA (q0N-tRNA), synthesized by archaeal tRNA-guanine transglycosylase (ArcTGT), has been believed to be converted to G+-containing tRNA (G+-tRNA) by the paralog of ArcTGT, ArcS. However, we found that several euryarchaeal ArcSs have lysine transfer activity to q0N-tRNA to form q0kN-tRNA, which has a preQ0 lysine adduct as a base. Through comparative genomics and biochemical experiments, we found that ArcS forms a robust complex with a radical S-adenosylmethionine (SAM) enzyme named RaSEA. The ArcS-RaSEA complex anaerobically converted q0N-tRNA to G+-tRNA in the presence of SAM and lysine via q0kN-tRNA. We propose that ArcS and RaSEA should be considered an archaeosine synthase α-subunit (lysine transferase) and ß-subunit (q0kN-tRNA lyase), respectively.


Asunto(s)
Enzimas/metabolismo , Guanosina/análogos & derivados , S-Adenosilmetionina/metabolismo , Bases de Datos Genéticas , Enzimas/genética , Perfilación de la Expresión Génica , Guanosina/biosíntesis , Lisina/metabolismo , Especificidad por Sustrato
13.
Nucleic Acids Res ; 47(20): 10942-10955, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31586407

RESUMEN

The complex between Trm7 and Trm734 (Trm7-Trm734) from Saccharomyces cerevisiae catalyzes 2'-O-methylation at position 34 in tRNA. We report biochemical and structural studies of the Trm7-Trm734 complex. Purified recombinant Trm7-Trm734 preferentially methylates tRNAPhe transcript variants possessing two of three factors (Cm32, m1G37 and pyrimidine34). Therefore, tRNAPhe, tRNATrp and tRNALeu are specifically methylated by Trm7-Trm734. We have solved the crystal structures of the apo and S-adenosyl-L-methionine bound forms of Trm7-Trm734. Small angle X-ray scattering reveals that Trm7-Trm734 exists as a hetero-dimer in solution. Trm7 possesses a Rossmann-fold catalytic domain, while Trm734 consists of three WD40 ß-propeller domains (termed BPA, BPB and BPC). BPA and BPC form a unique V-shaped cleft, which docks to Trm7. The C-terminal region of Trm7 is required for binding to Trm734. The D-arm of substrate tRNA is required for methylation by Trm7-Trm734. If the D-arm in tRNAPhe is docked onto the positively charged area of BPB in Trm734, the anticodon-loop is located near the catalytic pocket of Trm7. This model suggests that Trm734 is required for correct positioning of tRNA for methylation. Additionally, a point-mutation in Trm7, which is observed in FTSJ1 (human Trm7 ortholog) of nosyndromic X-linked intellectual disability patients, decreases the methylation activity.


Asunto(s)
ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Proteínas de Transporte Vesicular/química , ARNt Metiltransferasas/química , Dominio Catalítico , Enlace de Hidrógeno , Metilación , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Subunidades de Proteína/química , Pirimidinas/metabolismo , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Proteínas de Transporte Vesicular/metabolismo , ARNt Metiltransferasas/metabolismo
14.
J Bacteriol ; 201(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31405913

RESUMEN

tRNA m2G10/m22G10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms N2,N2-dimethylguanosine (m22G10) via N2-methylguanosine (m2G10). We determined the complete sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermococcus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNATrp identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2'-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2'-O-methyluridine at position 20, 5,2'-O-dimethylcytidine at position 32, and 2'-O-methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNATrp, although 1-methylguanosine is generally found at this location in tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene disruptant strains and compared their tRNATrp with that of the wild-type strain, which confirmed the absence of m22G10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures. The m22G10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures.IMPORTANCEThermococcus kodakarensis is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNATrp The construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures.


Asunto(s)
Metiltransferasas/genética , ARN de Transferencia de Triptófano/genética , Thermococcus/genética , Proteínas Arqueales/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Temperatura , Uridina/análogos & derivados , Uridina/genética
15.
Front Genet ; 10: 204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906314

RESUMEN

Thermus thermophilus is an extreme-thermophilic bacterium that can grow at a wide range of temperatures (50-83°C). To enable T. thermophilus to grow at high temperatures, several biomolecules including tRNA and tRNA modification enzymes show extreme heat-resistance. Therefore, the modified nucleosides in tRNA from T. thermophilus have been studied mainly from the view point of tRNA stabilization at high temperatures. Such studies have shown that several modifications stabilize the structure of tRNA and are essential for survival of the organism at high temperatures. Together with tRNA modification enzymes, the modified nucleosides form a network that regulates the extent of different tRNA modifications at various temperatures. In this review, I describe this network, as well as the tRNA recognition mechanism of individual tRNA modification enzymes. Furthermore, I summarize the roles of other tRNA stabilization factors such as polyamines and metal ions.

16.
BMC Public Health ; 19(1): 76, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651096

RESUMEN

BACKGROUND: As demonstrated by the United Nations High-Level Meeting on tuberculosis (TB) held in September 2018, the political momentum for TB has been increasing. The aim of this study was to analyze the current challenges and opportunities for global TB control and, with specific focus on policies surrounding TB control, to reveal what kinds of efforts are needed to accelerate global TB control. METHODS: We organized two expert meetings with the purposes of assessing the current situation and analyzing challenges regarding TB control. By applying Shiffman and Smith's framework which contains four categories; Actor, Ideas, Political context, and Issue characteristics, we analyzed the challenges and opportunities for global TB control based on the findings from the two expert meetings. RESULTS: In the Actor Category, we found that although there has already been active engagement by non-governmental organizations (NGOs), civil society organizations (CSOs) and private sectors, there still remained an area with room for improvement. In particular, the complexities behind varying drug regulatory and procurement systems per country hindered the active participation of the private sector in this area. As for the Ideas category, due to an increasing threat of antimicrobial resistance and growing number of global migrations, TB is now widely recognized as a health security issue rather than a purely health issue. This makes TB an easier target for political attention. As for the Political category, having the UN High-Level Meeting itself is not enough; such meetings must be followed up by actual commitments from heads of states. Lastly the issue characteristic indicates that the amount of funding for R&D for new drugs, vaccines and diagnostics for TB is not at an adequate level, and investment in childhood TB and missing cases are particularly in need. CONCLUSIONS: This study provides important insight into the current status of global efforts toward end TB epidemic. The outcomes from the UN high-level meeting on TB need to be closely monitored will be crucial for the progress towards this goal.


Asunto(s)
Erradicación de la Enfermedad/organización & administración , Epidemias/prevención & control , Salud Global , Tuberculosis/prevención & control , Niño , Congresos como Asunto , Humanos , Política , Tuberculosis/epidemiología , Naciones Unidas
17.
Microorganisms ; 6(4)2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30347855

RESUMEN

To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.

18.
J Biochem ; 164(2): 141-152, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29538705

RESUMEN

TrmFO catalyzes the formation of 5-methyluridine at position 54 in tRNA and uses N5, N10-methylenetetrahydrofolate (CH2THF) as the methyl group donor. We found that the trmFO gene-disruptant strain of Thermus thermophilus, an extremely thermophilic eubacterium, can grow faster than the wild-type strain in the synthetic medium at 70°C (optimal growth temperature). Nucleoside analysis revealed that the majority of modifications were appropriately introduced into tRNA, showing that the limited nutrients are preferentially consumed in the tRNA modification systems. CH2THF is consumed not only for tRNA methylation by TrmFO but also for dTMP synthesis by ThyX and methionine synthesis by multiple steps including MetF reaction. In vivo experiment revealed that methylene group derived from serine was rapidly incorporated into DNA in the absence of TrmFO. Furthermore, the addition of thymidine to the medium accelerated growth speed of the wild-type strain. Moreover, in vitro experiments showed that TrmFO interfered with ThyX through consumption of CH2THF. Addition of methionine to the medium accelerated growth speed of wild-type strain and the activity of TrmFO was disturbed by MetF. Thus, the consumption of CH2THF by TrmFO has a negative effect on dTMP and methionine syntheses and results in the slow growth under a nutrient-poor condition.


Asunto(s)
Tetrahidrofolatos/metabolismo , Thermus thermophilus/metabolismo , ARNt Metiltransferasas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Temperatura , Thermus thermophilus/enzimología , ARNt Metiltransferasas/química , ARNt Metiltransferasas/genética
19.
Nucleic Acids Res ; 46(4): 1958-1972, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29346615

RESUMEN

Four different types (α4, α'2, (αß)2 and ϵ2) of RNA-splicing endonucleases (EndAs) for RNA processing are known to exist in the Archaea. Only the (αß)2 and ϵ2 types can cleave non-canonical introns in precursor (pre)-tRNA. Both enzyme types possess an insert associated with a specific loop, allowing broad substrate specificity in the catalytic α units. Here, the hyperthermophilic euryarchaeon Methanopyrus kandleri (MKA) was predicted to harbor an (αß)2-type EndA lacking the specific loop. To characterize MKA EndA enzymatic activity, we constructed a fusion protein derived from MKA α and ß subunits (fMKA EndA). In vitro assessment demonstrated complete removal of the canonical bulge-helix-bulge (BHB) intron structure from MKA pre-tRNAAsn. However, removal of the relaxed BHB structure in MKA pre-tRNAGlu was inefficient compared to crenarchaeal (αß)2 EndA, and the ability to process the relaxed intron within mini-helix RNA was not detected. fMKA EndA X-ray structure revealed a shape similar to that of other EndA types, with no specific loop. Mapping of EndA types and their specific loops and the tRNA gene diversity among various Archaea suggest that MKA EndA is evolutionarily related to other (αß)2-type EndAs found in the Thaumarchaeota, Crenarchaeota and Aigarchaeota but uniquely represents constrained substrate specificity.


Asunto(s)
Endorribonucleasas/química , Euryarchaeota/enzimología , ARN de Transferencia/metabolismo , Biocatálisis , Cristalografía por Rayos X , Endorribonucleasas/metabolismo , Evolución Molecular , Intrones , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Precursores del ARN/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Especificidad por Sustrato
20.
J Biochem ; 163(2): 133-142, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29069453

RESUMEN

TrmB is a eubacterial tRNA methyltransferase which catalyzes the formation of N7-methylguanosine at position 46 (m7G46) in tRNA consuming S-adenosyl-L-methionine (AdoMet) as the methyl group donor during the reaction. Previously, we purified TrmB from Aquifex aeolicus, a hyper-thermophilic eubacterium, and clarified the recognition sites in tRNA. Furthermore, we reported that an additional C-terminal region of A. aeolicus TrmB is required for protein stability at high temperatures. In the current study, we devised a new purification method to remove contaminating RNA completely. The purified enzyme is mainly in a monomeric form. We prepared 17 mutant A. aeolicus TrmB proteins and performed kinetic studies. Our analyses reveal that Glu47, Tyr95, Arg108, Thr165 and Tyr167 residues are important for AdoMet binding and that Asp74, Asp97, and Thr132 are important for the methyltransfer reaction. Furthermore, substitution of Asp133 by alanine caused complete loss of enzymatic activity. Based on the results of our current studies and previous bioinformatic, biochemical and structural studies by others, a reaction mechanism for TrmB is proposed.


Asunto(s)
Estabilidad de Enzimas , Temperatura , ARNt Metiltransferasas/metabolismo , Sitios de Unión , Biología Computacional , Cinética , Especificidad por Sustrato , ARNt Metiltransferasas/química , ARNt Metiltransferasas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...