Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14539-14545, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38754971

RESUMEN

We propose using cocrystals as effective polarization matrices for triplet dynamic nuclear polarization (DNP) at room temperature. The polarization source can be uniformly doped into cocrystals formed through acid-acid, amide-amide, and acid-amide synthons. The dense-packing crystal structures, facilitated by multiple hydrogen bonding and π-π interactions, result in extended T1 relaxation times, enabling efficient polarization diffusion within the crystals. Our study demonstrates the successful polarization of a DNP-magnetic resonance imaging molecular probe, such as urea, within a cocrystal matrix at room temperature using triplet-DNP.

2.
Chem Sci ; 15(21): 8008-8018, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817574

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) are porous organic materials constructed via hydrogen bonds. HOFs have solubility in specific high-polar organic solvents. Therefore, HOFs can be returned to their components and can be reconstructed, which indicates their high recyclability. Network topologies, which are the frameworks of porous structures, control the pore sizes and shapes of HOFs. Therefore, they strongly affect the functions of porous materials. However, hydrogen bonds are usually weak interactions, and the design of the intended network topology in HOFs from their components has been challenging. Porous organic salts (POSs) are an important class of HOFs, are hierarchically constructed via strong charge-assisted hydrogen bonds between sulfonic acids and amines, and therefore are expected to have high designability of the porous structure. However, the network topology of POSs has been limited to only dia-topology. Here, we combined tetrasulfonic acid with the adamantane core (4,4',4'',4'''-(adamantane-1,3,5,7-tetrayl)tetrabenzenesulfonic acid; AdPS) and triphenylmethylamines with modified substituents in para-positions of benzene rings (TPMA-X, X = F, methyl (Me), Cl, Br, I). We changed the steric hindrance between the adamantane and substituents (X) in TPMA-X and obtained not only the common dia-topology for POSs but also rare sod-topology, and lon- and uni-topologies that are formed for the first time in HOFs. Changing template molecules under preparation helped in successfully isolating the porous structures of AdPS/TPMA-Me with dia-, lon-, and sod-topologies which exhibited different gas adsorption properties. Therefore, for the first time, we demonstrated that the steric design of HOF components facilitated the formation, diversification, and control of the network topologies and functions of HOFs.

3.
Angew Chem Int Ed Engl ; 63(25): e202404843, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38622084

RESUMEN

In this study, we investigated reversible intermolecular proton shifting (IPS) coupled with spin transition (ST) in a novel FeII complex. The host FeII complex and the guest carboxylic acid anion were connected by intermolecular hydrogen bonds (IHBs). We extended the intramolecular proton transfer coupled ST phenomenon to the intermolecular system. The dynamic phenomenon was confirmed by variable-temperature single-crystal X-ray diffraction, neutron crystallography, and infrared spectroscopy. The mechanism of IPS was further validated using density functional theory calculations. The discovery of IPS-coupled ST in crystalline molecular materials provides good insights into fundamental processes and promotes the design of novel multifunctional materials with tunable properties for various applications, such as optoelectronics, information storage, and molecular devices.

4.
Small ; : e2400063, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461517

RESUMEN

Most mechanochromic luminescent compounds are crystalline and highly hydrophobic; however, mechanochromic luminescent molecular assemblies comprising amphiphilic molecules have rarely been explored. This study investigated mechanochromic luminescent supramolecular fibers composed of dumbbell-shaped 9,10-bis(phenylethynyl)anthracene-based amphiphiles without any tetraethylene glycol (TEG) substituents or with two TEG substituents. Both amphiphiles formed water-insoluble supramolecular fibers via linear hydrogen bond formation. Both compounds acquired water solubility when solid samples composed of supramolecular fibers are ground. Grinding induces the conversion of 1D supramolecular fibers into micellar assemblies where fluorophores can form excimers, thereby resulting in a large redshift in the fluorescence spectra. Excimer emission from the ground amphiphile without TEG chains is retained after dissolution in water. The micelles are stable in water because hydrophilic dendrons surround the hydrophobic luminophores. By contrast, when water is added to a ground amphiphile having TEG substituents, fragmented supramolecular fibers with the same molecular arrangement as the initial supramolecular fibers are observed, because fragmented fibers are thermodynamically preferable to micelles as the hydrophobic arrays of fluorophores are covered with hydrophilic TEG chains. This leads to the recovery of the initial fluorescent properties for the latter amphiphile. These supramolecular fibers can be used as practical mechanosensors to detect forces at the mesoscale.

5.
Chem Sci ; 14(35): 9306-9315, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37712026

RESUMEN

[NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F is an O2-sensitive enzyme that is inactivated in the presence of O2 but the oxidized enzyme can recover its catalytic activity by reacting with H2 under anaerobic conditions. Here, we report the first neutron structure of [NiFe]-hydrogenase in its oxidized state, determined at a resolution of 2.20 Å. This resolution allowed us to reinvestigate the structure of the oxidized active site and to observe the positions of protons in several short hydrogen bonds. X-ray anomalous scattering data revealed that a part of the Ni ion is dissociated from the active site Ni-Fe complex and forms a new square-planar Ni complex, accompanied by rearrangement of the coordinated thiolate ligands. One of the thiolate Sγ atoms is oxidized to a sulfenate anion but remains attached to the Ni ion, which was evaluated by quantum chemical calculations. These results suggest that the square-planar complex can be generated by the attack of reactive oxygen species derived from O2, as distinct from one-electron oxidation leading to a conventional oxidized form of the Ni-Fe complex. Another major finding of this neutron structure analysis is that the Cys17S thiolate Sγ atom coordinating to the proximal Fe-S cluster forms an unusual hydrogen bond with the main-chain amide N atom of Gly19S with a distance of 3.25 Å, where the amide proton appears to be delocalized between the donor and acceptor atoms. This observation provides insight into the contribution of the coordinated thiolate ligands to the redox reaction of the Fe-S cluster.

6.
Chem Commun (Camb) ; 59(83): 12439-12442, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37773321

RESUMEN

A learning model is proposed that predicts both products and reaction pathways by combining machine learning and reaction network approaches. By training 50 fundamental organic reactions, the learning model predicted the products and pathways of 35 test reactions with a top-5 accuracy of 68.6%. The model identified the key fragment structures of the intermediates and could be classified as several basic reaction rules in the context of organic chemistry, such as the Markovnikov rule.

7.
J Am Chem Soc ; 145(35): 19177-19181, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37623927

RESUMEN

Multiple proton transfer (PT) controllable by external stimuli plays a crucial role in fundamental chemistry, biological activity, and material science. However, in crystalline systems, controlling multiple PT, which results in a distinct protonation state, remains challenging. In this study, we developed a novel tridentate ligand and iron(II) complex with a short hydrogen bond (HB) that exhibits a PT-coupled spin transition (PCST). Single-crystal X-ray and neutron diffraction measurements revealed that the positions of the two protons in the complex can be controlled by temperature and photoirradiation based on the thermal- and photoinduced PCST. The obtained results suggest that designing molecules that form short HBs is a promising approach for developing multiple PT systems in crystals.

8.
ACS Nano ; 17(12): 11318-11326, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37272845

RESUMEN

Understanding the catalytic mechanism of highly active two-dimensional electrocatalysts is crucial to their rational design. Herein, we reveal the element dependence of the reactivity of two-dimensional metal dichalcogenide sheets for electrocatalytic CO2 reduction. We found that tin(IV) disulfide (SnS2) and molybdenum(IV) disulfide (MoS2) sheets exhibited Faradaic efficiencies of 63.3% and ∼0%, respectively, for formic acid. Scanning electrochemical cell microscopy and theoretical calculations were used to identify the catalytically active sites of SnS2 as terraces and edges. Owing to the effective utilization of the entire surface area, SnS2 can effectively accelerate catalytic reactions. This finding provides a direction for material research in two-dimensional electrocatalysts for energy-efficient chemical production from electrochemical CO2 reduction, as well as for other energy devices.

9.
J Agric Food Chem ; 71(24): 9528-9537, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37277962

RESUMEN

One widely known herbicide target is 4-hydroxyphenylpyruvate dioxygenase (HPPD). Avena sativa HPPD is less sensitive to mesotrione (herbicide) than Arabidopsis thaliana HPPD. HPPD inhibitor-sensitivity is governed by the dynamic behavior of the C-terminal α-helix of HPPD (H11) in closed and open forms. However, the specific relationship between the plant inhibitor sensitivity and H11 dynamic behavior remains unclear. Herein, we determined the conformational changes in H11 to understand the inhibitor-sensitivity mechanism based on free-energy calculations using molecular dynamics simulations. The calculated free-energy landscapes revealed that Arabidopsis thaliana HPPD preferred the open form of H11 in the apo form and the closed-like form in complex with mesotrione, whereas Avena sativa HPPD exhibited the opposite tendency. We also identified some important residues involved in the dynamic behavior of H11. Therefore, inhibitor sensitivity is governed by indirect interactions due to the protein flexibility caused by the conformational changes of H11.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Dioxigenasas , Herbicidas , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Arabidopsis/metabolismo , Ciclohexanonas/farmacología , Herbicidas/farmacología , Herbicidas/química , Inhibidores Enzimáticos/química
10.
Phys Chem Chem Phys ; 25(21): 15023-15029, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37212593

RESUMEN

Enantiomeric excesses (ee) of L-amino acids in meteorites are higher than 10%, especially for isovaline (Iva). This suggests the existence of some kind of triggering mechanism responsible for the amplification of the ee from an initial small value. Here, we investigate the dimeric molecular interactions of alanine (Ala) and Iva in solution as an initial nucleation step of crystals at an accurate first-principles level. We find that the dimeric interaction of Iva is more chirality-dependent than that of Ala, thus providing a clear molecular-level insight into the enantioselectivity of amino acids in solution.

11.
Phys Chem Chem Phys ; 25(17): 12394-12400, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37092303

RESUMEN

The application of single-crystal neutron diffraction (SCND) to observe proton-transfer phenomena in crystalline compounds exhibiting unusual protonation states or proton dynamics has garnered significant research interest in recent years. However, proton tautomerism, which results in different protonation states before and after proton transfer, has never been observed using the SCND technique. Thus, to observe the proton tautomerism phenomenon by SCND measurements, we developed an iron(II) complex that forms a large crystal and exhibits a proton-transfer-coupled spin transition (PCST). The presence of the two types of proton tautomers was determined by conventional analysis of the proton position by X-ray crystallography, infrared spectroscopy, and density functional theory calculations. Finally, our results confirmed that proton tautomerism was successfully observed for the first time using variable-temperature SCND measurements.

12.
Chirality ; 35(9): 645-651, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37122074

RESUMEN

Aldehydes and carboxylic acids are widely used as catalysts for efficient racemization process of amino acids. However, the detailed reaction mechanism remains unclear. This work aims to clarify the racemization mechanism of aspartic acid (Asp) catalyzed by salicylaldehyde and acetic acid by using computational approaches. Density functional theory was used to obtain the structures and relative energies of 10 intermediates and five transition states, thus characterizing the main stages of the reaction. The calculated energy diagram shows that the dehydration step has the highest energy barrier, followed by the reaction step to change the chirality of Asp, which is a crucial process for racemization. In the dehydration reaction, water molecules can induce a remarkable decrease in the required energy.

13.
J Am Chem Soc ; 145(14): 8122-8129, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36976916

RESUMEN

Quinoidal molecules based on dipyrrolyldiketone boron complexes (QPBs), in which pyrrole units were connected by a partially conjugated system as a singlet spin coupler, were synthesized. QPB, which was stabilized by the introduction of a benzo unit at the pyrrole ß-positions, formed a closed-shell tautomer conformation that showed near-infrared absorption. The deprotonated species, monoanion QPB- and dianion QPB2-, showing over 1000 nm absorption, were formed by the addition of bases, providing ion pairs in combination with countercations. Diradical properties were observed in QPB2-, whose hyperfine coupling constants were modulated by ion-pairing with π-electronic and aliphatic cations, demonstrating cation-dependent diradical properties. VT NMR and ESR along with a theoretical study revealed that the singlet diradical was more stable than the triplet diradical.

14.
Inorg Chem ; 62(5): 2040-2048, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36695190

RESUMEN

The high-potential iron-sulfur protein (HiPIP) is an electron-transporting protein that functions in the photosynthetic electron-transfer system and possesses a cubane-type [4Fe-4S] cluster in the active center. Characterization of the geometrical and electronic structures of the [4Fe-4S] cluster leads to an understanding of the functions in HiPIP, which are expected to be influenced by the environment surrounding the [4Fe-4S] cluster. This work characterized the geometrical and electronic structures of the [4Fe-4S] cluster in the reduced HiPIP and evaluated their effects on the protein environment using the density functional theory (DFT) approach. DFT calculations showed that the structural asymmetry and spin delocalization between iron atoms allowed for the acquisition of a unique stable geometrical and electronic structure in the open-shell singlet. In addition, the formation of an Fe-Fe bond accompanying the spin delocalization was found to depend on the interatomic distance. A comparison of the calculated stable structures with and without consideration of the amino acids around the [4Fe-4S] cluster demonstrated that the surrounding amino acids stabilized the unique geometrical and electronic structure of the [4Fe-4S] cluster in HiPIP.


Asunto(s)
Proteínas Hierro-Azufre , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Dominio Catalítico , Proteínas Hierro-Azufre/química , Aminoácidos
15.
Astrobiology ; 22(11): 1330-1336, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067332

RESUMEN

The preferential synthesis or destruction of a single enantiomer by ultraviolet circularly polarized light (UV-CPL) has been proposed as a possible triggering mechanism for the extraterrestrial origin of homochirality. Herein, we investigate the photoabsorption property of propylene oxide (c-C3H6O) for UV-CPL in the Lyman-α region. Our calculations show that c-C3H6O was produced by CH3+ and CH3CH(OH)CH3 or C3H7• and O (triplet). The computed electronic circular dichroism spectra show that c-C3H6O and the intermediate (CH3CH(OH)CH2+) could absorb the UV-CPL originating from the Lyman-α emitter spectrum, suggesting that the photolysis of c-C3H6O or CH3CH(OH)CH2+ upon irradiation could induce chiral symmetry breakage.

16.
Astrobiology ; 22(9): 1129-1142, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35951031

RESUMEN

Enantiomeric excesses of l-amino acids have been detected in meteorites; however, their molecular mechanism and prebiotic syntheses are still a matter of debate. To elucidate the origin of homochirality, alanine and the chiral precursors formed in prebiotic processes were investigated with regard to their stabilities among their isomers by employing the minimum energy principle, namely, the abundancy of a molecule in the interstellar medium is directly correlated to the stability among isomers. To facilitate the search for possible isomers, we developed a new isomer search algorithm, the random connection method, and performed a thorough search for all the stable isomers within a given chemical formula. We found that alanine and most of its precursors are located at higher energy by more than 5.7 kcal mol-1, with respect to the most stable isomer that consists of a linear-chain structure, whereas only the 2-aminopropanenitrile is the most stable isomer among all others possible. The inherent stability of the α-amino nitrile suggests that the 2-aminopropanenitrile is the dominant contribution in the formation of the common enantiomeric excess over α-amino acids.


Asunto(s)
Alanina , Meteoroides , Aminoácidos/química , Estereoisomerismo
17.
J Phys Chem Lett ; 12(22): 5390-5394, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34080418

RESUMEN

Anhydrous organic crystalline materials incorporating imidazolium hydrogen succinate (Im-Suc), which exhibit high proton conduction even at temperatures above 100 °C, are attractive for elucidating proton conduction mechanisms toward the development of solid electrolytes for fuel cells. Herein, quantum chemical calculations were used to investigate the proton conduction mechanism in terms of hydrogen-bonding (H-bonding) changes and restricted molecular rotation in Im-Suc. The local H-bond structures for proton conduction were characterized by vibrational frequency analysis and compared with corresponding experimental data. The calculated potential energy surface involving proton transfer (PT) and imidazole (Im) rotational motion showed that PT between Im and succinic acid was a rate-limiting step for proton transport in Im-Suc and that proton conduction proceeded via the successive coupling of PT and Im rotational motion based on a Grotthuss-type mechanism. These findings provide molecular-level insights into proton conduction mechanisms for Im-based (or -incorporated) H-bonding organic proton conductors.

18.
Angew Chem Int Ed Engl ; 59(35): 14781-14787, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32452130

RESUMEN

A proton-electron coupling system, exhibiting unique bistability or multistability of the protonated state, is an attractive target for developing new switchable materials based on proton dynamics. Herein, we present an iron(II) hydrazone crystalline compound, which displays the stepwise transition and bistability of proton transfer at the crystal level. These phenomena are realized through the coupling with spin transition. Although the multi-step transition with hysteresis has been observed in various systems, the corresponding behavior of proton transfer has not been reported in crystalline systems; thus, the described iron(II) complex is the first example. Furthermore, because proton transfer occurs only in one of the two ligands and π electrons redistribute in it, the dipole moment of the iron(II) complexes changes with the proton transfer, wherein the total dipole moment in the crystal was canceled out owing to the antiferroelectric-like arrangement.

19.
Biotechnol Rep (Amst) ; 24: e00401, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31788440

RESUMEN

In this study, we have developed a novel method to monitor transgene expression in tissues by blood sampling. We administered plasmid DNA (pDNA) encoding non-secretory form of firefly luciferase as a reporter gene and pDNA encoding secretable Gaussia princeps luciferase as a monitor gene simultaneously into mice. Good positive correlations were found between log-transgene expression of the reporter gene and the monitor gene in the treated muscle, between the monitor gene in the treated muscle and plasma, and consequently between the reporter gene in the treated muscle and the monitor gene in plasma after naked pDNA transfer into the muscle of mice. Such positive correlations were also found with gastric serosal surface instillation of naked pDNA, intravenous injection of lipoplex, and hydrodynamics-based injection of naked pDNA. We developed monitoring method of transgene expression in tissues by blood sampling, which was named 'Therapeutic transgene monitoring (TTM)', after 'Therapeutic drug monitoring (TDM)'.

20.
J Phys Chem A ; 123(44): 9579-9586, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31625743

RESUMEN

Formic acid (HCOOH) is a suitable hydrogen storage material because of its high gravimetric and volumetric H2 capacities. Although H2 is produced by the thermal decomposition of HCOOH (HCOOH → H2 + CO2, dehydrogenation), the production of water and carbon monoxide (HCOOH → H2O + CO, dehydration) is the major pathway in HCOOH decomposition despite the thermodynamic favorability of the dehydrogenation process over the dehydration process. A large number of experimental and theoretical studies have suggested that both processes are competitive or that the dehydrogenation process has a lower activation energy in HCOOH decomposition. In the present work, we revisit the factors hindering the progress of the dehydrogenation process, using a whole chemical reaction network based on the graph theory. The calculated chemical reaction network shows that the factor controlling the dehydrogenation and dehydration processes is simple and fundamental and can be explained by the oxidation number of carbon and the betweenness centrality. Based on this understanding of the factors hindering the progress of dehydrogenation, the advantage of the dehydration process in HCOOH decomposition is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...