Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes Genet Syst ; 97(6): 285-295, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36858512

RESUMEN

Genome instability is a major cause of aging. In the budding yeast Saccharomyces cerevisiae, instability of the ribosomal RNA gene repeat (rDNA) is known to shorten replicative lifespan. In yeast, rDNA instability in an aging cell is associated with accumulation of extrachromosomal rDNA circles (ERCs) which titrate factors critical for lifespan maintenance. ERC accumulation is not detected in mammalian cells, where aging is linked to DNA damage. To distinguish effects of DNA damage from those of ERC accumulation on senescence, we re-analyzed a yeast strain with a replication initiation defect in the rDNA, which limits ERC multiplication. In aging cells of this strain (rARS-∆3) rDNA became unstable, as in wild-type cells, whereas significantly fewer ERCs accumulated. Single-cell aging analysis revealed that rARS-∆3 cells follow a linear survival curve and can have a wild-type replicative lifespan, although a fraction of the cells stopped dividing earlier than wild type. The doubling time of rARS-∆3 cells appears to increase in the final cell divisions. Our results suggest that senescence in rARS-∆3 is linked to the accumulation of DNA damage as in mammalian cells, rather than to elevated ERC level. Therefore, this strain should be a good model system to study ERC-independent aging.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genes de ARNr , Senescencia Celular/genética , ADN Ribosómico/genética , Proteínas de Saccharomyces cerevisiae/genética , Replicación del ADN/genética
2.
Biosci Biotechnol Biochem ; 86(1): 104-108, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34718407

RESUMEN

The histone variant H2A.Z is deposited into chromatin by specific machinery and is required for genome functions. Using a linker-mediated complex strategy combined with yeast genetic complementation, we demonstrate evolutionary conservation of H2A.Z together with its chromatin incorporation and functions. This approach is applicable to the evolutionary analyses of proteins that form complexes with interactors.


Asunto(s)
Histonas
3.
Curr Genet ; 66(1): 7-13, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31392389

RESUMEN

The ribosomal RNA genes (rDNA) exist as tandem repeats in eukaryotes and are, therefore, highly unstable. Each rDNA unit includes a replication fork barrier site to avoid collisions between DNA replication forks and transcriptional machinery. However, because of this barrier, DNA double-strand breaks are induced at a relatively high frequency. If damage is repaired by the homologous recombination in rDNAs, it may result in frequent copy number changes and the production of extrachromosomal ribosomal DNA circles, both of which are closely linked to the regulation of lifespan. Here, we review recent progress in elucidating a multi-layered repair process of rDNA that occurs in the nucleolus, nucleoplasm and nuclear pores. Binding to nuclear pores appears to be the final strategy for repairing any remaining damage to the rDNA. Here, we propose the possible contribution of nuclear pores to the asymmetric distribution of damaged rDNA between mother and daughter cells as well as its possible impact on aging/rejuvenation.


Asunto(s)
Envejecimiento/genética , Duplicación de Gen , Genes de ARNr , Poro Nuclear/genética , Secuencias Repetidas en Tándem , Animales , Roturas del ADN de Doble Cadena , Replicación del ADN , Inestabilidad Genómica , Humanos , Longevidad/genética , Poro Nuclear/metabolismo , Rejuvenecimiento
4.
PLoS Genet ; 15(4): e1008103, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998688

RESUMEN

The ribosomal RNA genes (rDNA) comprise a highly repetitive gene cluster. The copy number of genes at this locus can readily change and is therefore one of the most unstable regions of the genome. DNA damage in rDNA occurs after binding of the replication fork blocking protein Fob1 in S phase, which triggers unequal sister chromatid recombination. However, the precise mechanisms by which such DNA double-strand breaks (DSBs) are repaired is not well understood. Here, we demonstrate that the conserved protein kinase Tel1 maintains rDNA stability after replication fork arrest. We show that rDNA associates with nuclear pores, which is dependent on DNA damage checkpoint kinases Mec1/Tel1 and replisome component Tof1. These findings suggest that rDNA-nuclear pore association is due to a replication fork block and subsequent DSB. Indeed, quantitative microscopy revealed that rDNA is relocated to the nuclear periphery upon induction of a DSB. Finally, rDNA stability was reduced in strains where this association with the nuclear envelope was prevented, which suggests its importance for avoiding improper recombination repair that could induce repeat instability.


Asunto(s)
Daño del ADN , Genes de ARNr , Poro Nuclear/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Hongos , ADN Ribosómico/genética , Proteínas de Unión al ADN/metabolismo , Orden Génico , Mutación , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell Rep ; 24(10): 2614-2628.e4, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184497

RESUMEN

Multiple pathways regulate the repair of double-strand breaks (DSBs) to suppress potentially dangerous ectopic recombination. Both sequence and chromatin context are thought to influence pathway choice between non-homologous end-joining (NHEJ) and homology-driven recombination. To test the effect of repetitive sequences on break processing, we have inserted TG-rich repeats on one side of an inducible DSB at the budding yeast MAT locus on chromosome III. Five clustered Rap1 sites within a break-proximal TG repeat are sufficient to block Mre11-Rad50-Xrs2 recruitment, impair resection, and favor elongation by telomerase. The two sides of the break lose end-to-end tethering and show enhanced, uncoordinated movement. Only the TG-free side is resected and shifts to the nuclear periphery. In contrast to persistent DSBs without TG repeats that are repaired by imprecise NHEJ, nearly all survivors of repeat-proximal DSBs repair the break by a homology-driven, non-reciprocal translocation from ChrIII-R to ChrVII-L. This suppression of imprecise NHEJ at TG-repeat-flanked DSBs requires the Uls1 translocase activity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Telómero/metabolismo , Translocación Genética/fisiología , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN por Unión de Extremidades/fisiología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Translocación Genética/genética
7.
Genes Dev ; 30(8): 931-45, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27056668

RESUMEN

High-resolution imaging shows that persistent DNA damage in budding yeast localizes in distinct perinuclear foci for repair. The signals that trigger DNA double-strand break (DSB) relocation or determine their destination are unknown. We show here that DSB relocation to the nuclear envelope depends on SUMOylation mediated by the E3 ligases Siz2 and Mms21. In G1, a polySUMOylation signal deposited coordinately by Mms21 and Siz2 recruits the SUMO targeted ubiquitin ligase Slx5/Slx8 to persistent breaks. Both Slx5 and Slx8 are necessary for damage relocation to nuclear pores. When targeted to an undamaged locus, however, Slx5 alone can mediate relocation in G1-phase cells, bypassing the requirement for polySUMOylation. In contrast, in S-phase cells, monoSUMOylation mediated by the Rtt107-stabilized SMC5/6-Mms21 E3 complex drives DSBs to the SUN domain protein Mps3 in a manner independent of Slx5. Slx5/Slx8 and binding to pores favor repair by ectopic break-induced replication and imprecise end-joining.


Asunto(s)
Roturas del ADN de Doble Cadena , Poro Nuclear/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sumoilación , Mutación , Membrana Nuclear/metabolismo , Unión Proteica , Fase S/fisiología , Saccharomyces cerevisiae/citología , Ubiquitina-Proteína Ligasas/metabolismo
8.
Methods Mol Biol ; 1292: 77-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25804749

RESUMEN

Fluorescence microscopy has enabled the analysis of both the spatial distribution of DNA damage and its dynamics during the DNA damage response (DDR). Three microscopic techniques can be used to study the spatiotemporal dynamics of DNA damage. In the first part we describe how we determine the position of DNA double-strand breaks (DSBs) relative to the nuclear envelope. The second part describes how to quantify the co-localization of DNA DSBs with nuclear pore clusters, or other nuclear subcompartments. The final protocols describe methods for the quantification of locus mobility over time.


Asunto(s)
Saccharomycetales/genética , Saccharomycetales/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN/genética
9.
Mol Cell ; 55(4): 626-39, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25066231

RESUMEN

Persistent DNA double-strand breaks (DSBs) are recruited to the nuclear periphery in budding yeast. Both the Nup84 pore subcomplex and Mps3, an inner nuclear membrane (INM) SUN domain protein, have been implicated in DSB binding. It was unclear what, if anything, distinguishes the two potential sites of repair. Here, we characterize and distinguish the two binding sites. First, DSB-pore interaction occurs independently of cell-cycle phase and requires neither the chromatin remodeler INO80 nor recombinase Rad51 activity. In contrast, Mps3 binding is S and G2 phase specific and requires both factors. SWR1-dependent incorporation of Htz1 (H2A.Z) is necessary for break relocation to either site in both G1- and S-phase cells. Importantly, functional assays indicate that mutations in the two sites have additive repair defects, arguing that the two perinuclear anchorage sites define distinct survival pathways.


Asunto(s)
Sitios de Unión/genética , Ensamble y Desensamble de Cromatina/fisiología , ADN de Hongos/genética , Proteínas Fúngicas/fisiología , Saccharomycetales/genética , Adenosina Trifosfatasas/fisiología , Sitios de Unión/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Saccharomycetales/metabolismo
10.
Nat Cell Biol ; 14(5): 502-9, 2012 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-22484486

RESUMEN

Chromatin mobility is thought to facilitate homology search during homologous recombination and to shift damage either towards or away from specialized repair compartments. However, unconstrained mobility of double-strand breaks could also promote deleterious chromosomal translocations. Here we use live time-lapse fluorescence microscopy to track the mobility of damaged DNA in budding yeast. We found that a Rad52-YFP focus formed at an irreparable double-strand break moves in a larger subnuclear volume than the undamaged locus. In contrast, Rad52-YFP bound at damage arising from a protein-DNA adduct shows no increase in movement. Mutant analysis shows that enhanced double-strand-break mobility requires Rad51, the ATPase activity of Rad54, the ATR homologue Mec1 and the DNA-damage-response mediator Rad9. Consistent with a role for movement in the homology-search step of homologous recombination, we show that recombination intermediates take longer to form in cells lacking Rad9.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/fisiología , Cromatina/metabolismo , Microscopía Fluorescente , Saccharomyces cerevisiae/metabolismo
11.
Nucleus ; 3(1): 22-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22156743

RESUMEN

The nucleolus, the most prominent structure observed in the nucleus, is often called a "ribosome factory." Cells spend an enormous fraction of their resources to achieve the mass-production of ribosomes required by rapid growth. On the other hand, ribosome biogenesis is also tightly controlled, and must be coordinated with other cellular processes. Ribosomal proteins and ribosome biogenesis factors are attractive candidates for this link. Recent results suggest that some of them have functions beyond ribosome biogenesis. Here we review recent progress on ribosome biogenesis factors, Ebp2 and Rrs1, in yeast Saccharomyces cerevisiae. In this organism, Ebp2 and Rrs1 are found in the nucleolus and at the nuclear periphery. At the nuclear envelope, these proteins interact with a membrane-spanning SUN domain protein, Mps3, and play roles in telomere clustering and silencing along with the silent information regulator Sir4. We propose that a protein complex consisting Ebp2, Rrs1 and Mps3 is involved in a wide range of activities at the nuclear envelope.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Sistema Solar , Animales , Proteínas Portadoras/metabolismo , Humanos , Ratones , Unión Proteica , Ribosomas/genética , Saccharomyces cerevisiae/genética , Telómero/genética , Telómero/metabolismo
12.
EMBO J ; 30(18): 3799-811, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21822217

RESUMEN

Two interacting ribosome biogenesis factors, Ebp2 and Rrs1, associate with Mps3, an essential inner nuclear membrane protein. Both are found in foci along the nuclear periphery, like Mps3, as well as in the nucleolus. Temperature-sensitive ebp2 and rrs1 mutations that compromise ribosome biogenesis displace the mutant proteins from the nuclear rim and lead to a distorted nuclear shape. Mps3 is known to contribute to the S-phase anchoring of telomeres through its interaction with the silent information regulator Sir4 and yKu. Intriguingly, we find that both Ebp2 and Rrs1 interact with the C-terminal domain of Sir4, and that conditional inactivation of either ebp2 or rrs1 interferes with both the clustering and silencing of yeast telomeres, while telomere tethering to the nuclear periphery remains intact. Importantly, expression of an Ebp2-Mps3 fusion protein in the ebp2 mutant suppresses the defect in telomere clustering, but not its defects in growth or ribosome biogenesis. Our results suggest that the ribosome biogenesis factors Ebp2 and Rrs1 cooperate with Mps3 to mediate telomere clustering, but not telomere tethering, by binding Sir4.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN de Hongos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Unión Proteica , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
13.
Biosci Biotechnol Biochem ; 73(2): 443-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19202276

RESUMEN

Rrs1 has an essential role in 60S ribosomal subunit assembly in Saccharomyces cerevisiae. We isolated a temperature-sensitive kcs1 mutant that suppresses the cold sensitivity of rrs1-1. The kcs1 allele, resulting in truncation of inositol 6 phosphate kinase domain, and kcs1 disruption suppress a defect of rrs1-1 in 60S ribosomal subunit assembly. These results suggest that inositol polyphosphate metabolism affects ribosome biogenesis in yeast.


Asunto(s)
Ácido Fítico/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Frío , Genes Fúngicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biosci Biotechnol Biochem ; 72(4): 1080-6, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18391458

RESUMEN

We have found that Ebp2p is essential for maturation of 25S rRNA and assembly of 60S pre-ribosomal subunits in Saccharomyces cerevisiae. We obtained three temperature-sensitive ebp2 mutants by PCR. Polysome analysis revealed that the synthesis of 60S ribosomal subunits was compromised in each of the ebp2 mutants at the restrictive temperature. The ebp2 alleles affected the transcriptional repression of both rRNA and ribosomal protein genes due to a secretion block. Fluorescence microscopy showed that a secretion block led to condensation of nucleolar Ebp2p, whereas that was not the case with the ebp2 mutant. These results suggest that Ebp2p is implicated in the secretory response, including changes in nucleolar architecture.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Secuencia de Bases , Proteínas Portadoras/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biogénesis de Organelos , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sensibilidad y Especificidad , Temperatura , Tunicamicina/farmacología
15.
RNA ; 13(11): 1977-87, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17804645

RESUMEN

We previously cloned RRP14/YKL082c, whose product exhibits two-hybrid interaction with Ebp2p, a regulatory factor of assembly of 60S ribosomal subunits. Depletion of Rrp14p results in shortage of 60S ribosomal subunits and retardation of processing from 27S pre-rRNA to 25S rRNA. Furthermore, 35S pre-rRNA synthesis appears to decline in Rrp14p-depleted cells. Rrp14p interacts with regulatory factors of 60S subunit assembly and also with Utp11p and Faf1p, which are regulatory factors required for assembly of 40S ribosomal subunits. We propose that Rrp14p is involved in ribosome synthesis from the beginning of 35S pre-rRNA synthesis to assembly of the 60S ribosomal subunit. Disruption of RRP14 causes an extremely slow growth rate of the cell, a severe defect in ribosome synthesis, and a depolarized localization of cortical actin patches throughout the cell cycle. These results suggest that Rrp14p has dual functions in ribosome synthesis and polarized cell growth.


Asunto(s)
Nucléolo Celular/metabolismo , Polaridad Celular/fisiología , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/análisis , Actinas/metabolismo , Ciclo Celular , Proteínas Nucleares/genética , Precursores del ARN/biosíntesis , ARN Ribosómico/biosíntesis , ARN Ribosómico 18S/biosíntesis , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
16.
Nucleic Acids Res ; 33(14): 4553-62, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16100378

RESUMEN

Rrs1p, a ribosomal protein L11-binding protein, has an essential role in biogenesis of 60S ribosomal subunits. We obtained conditionally synthetic lethal allele with the rrs1-5 mutation and determined that the mutation is in REX1, which encodes an exonuclease. The highly conserved leucine at 305 was substituted with tryptophan in rex1-1. The rex1-1 allele resulted in 3'-extended 5S rRNA. Polysome analysis revealed that rex1-1 and rrs1-5 caused a synergistic defect in the assembly of 60S ribosomal subunits. In vivo and in vitro binding assays indicate that Rrs1p interacts with the ribosomal protein L5-5S rRNA complex. The rrs1-5 mutation weakens the interaction between Rrs1p with both L5 and L11. These data suggest that the assembly of L5-5S rRNA on 60S ribosomal subunits coordinates with assembly of L11 via Rrs1p.


Asunto(s)
Proteínas Nucleares/fisiología , ARN Ribosómico 5S/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Procesos de Crecimiento Celular , Genes Fúngicos , Mutación , Proteínas Nucleares/genética , Procesamiento de Término de ARN 3' , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
17.
FEBS Lett ; 565(1-3): 106-10, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-15135061

RESUMEN

Rrs1p is a ribosomal protein L11-binding protein in Saccharomyces cerevisiae. We have obtained temperature-sensitive rrs1 mutants by random PCR mutagenesis. [(3)H]Methionine pulse-chase analysis reveals that the rrs1 mutations cause a defect in maturation of 25S rRNA. Ribosomal protein L25-enhanced green fluorescent protein, a reporter of the 60S ribosomal subunit, concentrates in the nucleus with enrichment in the nucleolus when the rrs1 mutants are shifted to the restrictive temperature. These results suggest that Rrs1p stays on the pre-60S particle from the early stage to very late stage of the large-subunit maturation and is required for export of 60S subunits from the nucleolus to the cytoplasm.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas Portadoras/química , Proteínas Portadoras/fisiología , Proteínas Nucleares , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Alelos , Secuencia de Aminoácidos , Western Blotting , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Mutación , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , ARN Ribosómico/química , Homología de Secuencia de Aminoácido , Temperatura , Factores de Tiempo , Transcripción Genética
18.
J Biol Chem ; 279(24): 25353-8, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15078877

RESUMEN

Ebp2p, the yeast homolog of human Epstein-Barr virus nuclear antigen 1-binding protein 2, is essential for biogenesis of the 60 S ribosomal subunit. Two-hybrid screening exhibited that, in addition to factors necessary for assembly of the 60 S subunit, Ebp2p interacts with Rps16p, ribosomal protein S16, and the 40 S ribosomal subunit assembly factor, Utp11p, as well as Yil019w, the function of which was previously uncharacterized. Depletion of Yil019w resulted in reduction in levels of both of 18 S rRNA and 40 S ribosomal subunit without affecting levels of 25 S rRNA and 60 S ribosomal subunits. 35 S pre-rRNA and aberrant 23 S RNA accumulated, indicating that pre-rRNA processing at sites A(0)-A(2) is inhibited when Yil019w is depleted. Each combination from Yil019w, Utp11p, and Rps16p showed two-hybrid interaction.


Asunto(s)
Proteínas Portadoras/fisiología , Ribosomas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , División Celular , Precursores del ARN/metabolismo , ARN Ribosómico 18S/metabolismo , Ribosomas/química , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA