RESUMEN
Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Frío , Proteínas de Unión al ADN , Diapausa , Longevidad , Factores de Transcripción , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diapausa/genética , Diapausa/fisiología , Longevidad/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Transducción de Señal , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Codón sin Sentido/genética , Neuropéptidos/metabolismo , Neuropéptidos/genética , Proteínas Portadoras , Factores de Transcripción con Motivo Hélice-Asa-Hélice BásicoRESUMEN
Society in eusocial insects is based on the reproductive division of labor, with a small number of reproductive individuals supported by a large number of nonreproductive individuals. Because inclusive fitness of all colony members depends on the survival and fertility of reproductive members, sterile members provide royals with special treatment. Here, we show that termite kings and queens each receive special food of a different composition from workers. Sequential analysis of feeding processes demonstrated that workers exhibit discriminative trophallaxis, indicating their decision-making capacity in allocating food to the kings and queens. Liquid chromatography tandem-mass spectrometry analyses of the stomodeal food and midgut contents revealed king- and queen-specific compounds, including diacylglycerols and short-chain peptides. Desorption electrospray ionization mass spectrometry imaging analyses of 13C-labeled termites identified phosphatidylinositol and acetyl-l-carnitine in the royal food. Comparison of the digestive tract structure showed remarkable differences in the volume ratio of the midgut-to-hindgut among castes, indicating that digestive division of labor underlies reproductive division of labor. Our demonstration of king- and queen-specific foods in termites provides insight into the nutritional system that underpins the extraordinary reproduction and longevity of royals in eusocial insects.
RESUMEN
Herpes simplex virus thymidine kinase (HSVTK)/ganciclovir (GCV) suicide gene therapy has a long history of treating malignant gliomas. Recently, stem cells from human exfoliated deciduous teeth (SHED), which are collected from deciduous teeth and have excellent harvestability, ethical aspects, and self-renewal, have been attracting attention mainly in the field of gene therapy. In the present study, we assessed SHED as a novel cellular vehicle for suicide gene therapy in malignant gliomas, as we have previously demonstrated with various cell types. SHED was transduced with the HSVTK gene (SHEDTK). In vitro experiments showed a significant bystander effect between SHEDTK and glioma cell lines in coculture. Furthermore, apoptotic changes caused by caspase 3/7 activation were simultaneously observed in SHEDTK and glioma cells. Mice implanted with a mixture of U87 and SHEDTK and treated with intraperitoneal GCV survived for longer than 100 days. Additionally, tumors in treatment model mice were significantly reduced in size during the treatment period. SHEDTK implanted at the contralateral hemisphere migrated toward the tumor crossing the corpus callosum. These results suggested that SHEDTK-based suicide gene therapy has potent tumor tropism and a bystander-killing effect, potentially offering a new promising therapeutic modality for malignant gliomas.
Asunto(s)
Ganciclovir , Terapia Genética , Glioma , Animales , Humanos , Ratones , Efecto Espectador/genética , Ganciclovir/farmacología , Terapia Genética/métodos , Glioma/terapia , Glioma/tratamiento farmacológico , Simplexvirus/genética , Células Madre , Timidina Quinasa/genética , Diente Primario , Genes Transgénicos SuicidasRESUMEN
Photoisomerization of lipids has been well studied. As for the eyes, photoisomerization from 11-cis isomer to all-trans-retinal is well-known as the first step of the visual transduction in the photoreceptors. In addition to that, there would be other ocular lipids that undergo photoisomerization, which may be involved in ocular health and function. To explore any photoisomerizable lipids in the eyes, the nonirradiated and sunlight-irradiated eyeball extracts were subjected to liquid chromatography-mass spectrometry analysis, followed by the identification of the decreased lipid species in the irradiated extracts. Surprisingly, more than nine hundred lipid species were decreased in the irradiated extracts. Three lipid species, coenzyme Q10 (CoQ10), triglyceride(58:4), and coenzyme Q9, were decreased both significantly (p < 0.05) and by more than two-fold, where CoQ10 showed the most significant decrease. Later, photoisomerization was identified as the prominent cause underlying the decrease of CoQ10. Interestingly, CoQ10 in the sunlight-irradiated fresh eyeballs was also isomerized. Both the visible light and ultraviolet radiation were capable of producing CoQ10 isomer, while the latter showed rapid action. This study is believed to enhance our understanding of the biochemistry and photodamage of the eye and can potentially contribute to the advancement of opto-lipidomics.
Asunto(s)
Luz Solar , Rayos Ultravioleta , Cromatografía Liquida , Lípidos , Ubiquinona/análogos & derivadosRESUMEN
BACKGROUND/AIM: Resistance to chemotherapy is a major obstacle for patients with unresectable colorectal cancer (CRC); however, the factors that induce chemoresistance have not been elucidated. Lipid composition influences neoplastic behaviour. Therefore, this study examined whether lipid composition affects sensitivity to chemotherapeutic agents in CRC. MATERIALS AND METHODS: We performed a lipidomic analysis of a CRC xenograft-derived spheroid model to identify potential relationships between the lipid profile and chemoresistance to 5-fluorouracil (5-FU). Genetic and pharmacological modulation of lipid synthesis were also used in the HCT-116 and DLD-1 CRC cell lines to further characterize resistance to 5-FU. RESULTS: Our lipidomic profiling revealed that phospholipids with saturated fatty acids (SFAs) were more abundant in 5-FU-resistant spheroids. The importance of phospholipids containing SFA in chemoresistance was confirmed by showing that in HCT-116 and DLD-1 cells, genetic or pharmacological inactivation of stearoyl-CoA desaturase-1, a key enzyme that converts SFAs to monounsaturated fatty acids, increased the proportion of SFAs in membranous phospholipids and reduced cell membrane fluidity, and this ultimately resulted in resistance to 5-FU. CONCLUSION: These data suggest that the saturated to monounsaturated fatty acid ratio in cellular membranous phospholipids affects sensitivity to chemotherapeutic agents.
Asunto(s)
Neoplasias Colorrectales , Fluorouracilo , Neoplasias Colorrectales/genética , Ácidos Grasos , Ácidos Grasos Monoinsaturados , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Lípidos de la Membrana/uso terapéuticoRESUMEN
Lung cancer is one of the most common cancers, and the number of patients with intracranial metastases is increasing. Previously, we developed an enzyme prodrug suicide gene therapy based on the herpes simplex virus thymidine kinase (HSV-TK)/ganciclovir (GCV) system using various mesenchymal stem cells to induce apoptosis in malignant gliomas through bystander killing effects. Here, we describe stem cells from human exfoliated deciduous teeth (SHED) as gene vehicles of the TK/GCV system against a brain metastasis model of non-small cell lung cancer (NSCLC). We introduced the A168H mutant TK (TKA168H) into SHED to establish the therapeutic cells because of the latent toxicity of wild type. SHED expressing TKA168H (SHED-TK) exhibited chemotaxis to the conditioned medium of NSCLC and migrated toward implanted NSCLC in vivo. SHED-TK demonstrated a strong bystander effect in vitro and in vivo and completely eradicated H1299 NSCLC in the brain. SHED-TK cells implanted intratumorally followed by GCV administration significantly suppressed the growth of H1299 and improved survival time. These results indicate that the TKA168H variant is suitable for establishing therapeutic cells and that intratumoral injection of SHED-TK followed by GCV administration may be a useful strategy for therapeutic approaches.
RESUMEN
Fatty acids (FAs) have diverse functions in cellular activities. The intracellular distribution of FAs is critical for their functions. Imaging of FAs by time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been achieved. However, TOF-SIMS images of FAs so far do not have subcellular distribution due to inadequate sample preparation methods. In this study, we developed a chemical fixation method using glutaraldehyde (GA) with uranyl acetate (UA), which preserved cellular structure and intracellular FA distribution well. Combining GA+UA fixation with sputtering-based methods and unroofing-based methods, respectively, we successfully imaged intracellular lipids with the subcellular distribution.
Asunto(s)
Ácidos Grasos , Espectrometría de Masa de Ion Secundario , GlutaralRESUMEN
The plasma membrane (PM) serves multiple functions to support cell activities with its heterogeneous molecular distribution. Fatty acids (FAs) are hydrophobic components of the PM whose saturation and length determine the membrane's physical properties. The FA distribution contributes to the PM's lateral heterogeneity. However, the distribution of PM FAs is poorly understood. Here, we proposed the FA cluster hypothesis, which suggested that FAs on the PM exist as clusters. By the optogenetic tool translocating the endoplasmic reticulum (ER), we were able to manipulate the distribution of PM FAs. We used time-of-flight combined secondary ion mass spectrometry (TOF-SIMS) to image PM FAs and discovered that PM FAs were presented and distributed as clusters and are also manipulated as clusters. We also found the existence of multi-FA clusters formed by the colocalization of more than one FA. Our optogenetic tool also decreased the clustering degree of FA clusters and the formation probability of multi-FA clusters. This research opens up new avenues and perspectives to study PM heterogeneity from an FA perspective. This research also suggests a possible treatment for diseases caused by PM lipid aggregation and furnished a convenient tool for therapeutic development.
Asunto(s)
Ácidos Grasos , Espectrometría de Masa de Ion Secundario , Ácidos Grasos/metabolismo , Espectrometría de Masa de Ion Secundario/métodos , Optogenética , Membrana Celular/metabolismo , Diagnóstico por ImagenRESUMEN
BACKGROUND: Stem cells from human exfoliated deciduous teeth (SHED) are a mesenchymal stem cell type and have recently attracted attention for their high proliferative rate, multipotency, and immunosuppressive properties. However, SHED have not yet been investigated for anticancer properties. We therefore investigated whether SHED can be used as a treatment modality, particularly for anti-glioma therapy. METHODS: In vitro, we examined the mobility of SHED and their ability to migrate towards glioma-conditioned medium and specific growth factors secreted by malignant gliomas. In vivo, we transplanted SHED into the left hemisphere of nude mice that had been previously implanted with human malignant glioma U87 cells into the right hemisphere. We assessed whether SHED had tumorigenic potential. RESULTS: SHED exhibited strong migration ability towards malignant glioma in both in vitro and in vivo assays. In vitro, SHED migrated towards glioma-conditioned medium and specific growth factors such as stem cell factor, platelet-derived growth factor BB, C-X-C motif chemokine ligand 12, and vascular endothelial growth factor. SHED were accumulated around tumor cells in the contralateral hemisphere 1 week after transplantation. Moreover, SHED remained in the brains of nude mice 150 days after transplantation. Finally, we verified that SHED had no malignant transformation or engraftment of SHED in the mouse brain. CONCLUSIONS: Our findings indicate that SHED can potentially be applied to track malignant glioma.
Asunto(s)
Glioma , Células Madre , Diente Primario , Animales , Humanos , Ratones , Medios de Cultivo Condicionados/farmacología , Ratones Desnudos , Factor A de Crecimiento Endotelial VascularRESUMEN
Ligamentum flavum hypertrophy (HLF) is the most important component of lumbar spinal canal stenosis (LSCS). Analysis of hypertrophied ligamentum flavum (HLF) samples from patients with LSCS can be an important que. The current study analyzed the surgical samples of HLF samples in patients with LCSC using quantitative and qualitative high performance-liquid chromatography and mass spectrometry. We collected ligamentum flavum (LF) tissue from twelve patients with LSCS and from four patients with lumbar disk herniation (LDH). We defined LF from LSCS patients as HLF and that from LDH patients as non-hypertrophied ligamentum flavum (NHLF). Total lipids were extracted from the LF samples and evaluated for quantity and quality using liquid chromatography and mass spectrometry. The total lipid amount of the HLF group was 3.6 times higher than that of the NHLF group. Phosphatidylcholines (PCs), ceramides (Cers), O-acyl-ω-hydroxy fatty acids (OAHFAs), and triglycerides (TGs) in the HLF group were more than 32 times higher than those of the NHLF group. PC(26:0)+H+, PC(25:0)+H+, and PC(23:0)+H+ increased in all patients in the HLF group compared to the NHLF group. The thickness of the LF correlated significantly with PC(26:0)+H+ in HLF. We identified the enriched specific PCs, Cers, OAHFAs, and TGs in HLF.
Asunto(s)
Hipertrofia/patología , Ligamento Amarillo/patología , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Vértebras Lumbares/patología , Canal Medular/patología , Estenosis Espinal/patología , Adulto , Anciano , Dorso/patología , Femenino , Fibrosis/patología , Humanos , Desplazamiento del Disco Intervertebral/patología , MasculinoRESUMEN
Lipid-rich macrophages in atherosclerotic lesions are thought to be derived from myeloid and vascular smooth muscle cells. A series of studies with genetic and pharmacological inhibition of fatty acid binding protein 4 (FABP4) and FABP5 and bone marrow transplant experiments with FABP4/5 deficient cells in mice have demonstrated that these play an important role in the development of atherosclerosis. However, it is still uncertain about the differential cell-type specificity and distribution between FABP4- and FABP5-expressing cells in early- and late-stage atherosclerotic lesions. In this study, we first explored spatial distribution of FABP4/5 in atherosclerotic lesions in apolipoprotein E deficient (ApoE-/-) mice. FABP4 was only marginally detected in early and advanced lesions, whereas FABP5 was abundantly expressed in these lesions. In advanced lesions, the FABP5-positive area was mostly restricted to the foam cell layer adjacent to the lumen above collagen and elastic fibers with a high signal/noise ratio. Oil red O (ORO) staining revealed that FABP5-positive cells were lipid-rich in early and advanced lesions. Together, most of lipid-rich FABP5-positive cells reside adjacent to the lumen above collagen and elastic fibers. We next studied involvement of FABP5 in lesion formation of atherosclerosis using ApoE-/- FABP5-/- mice. However, deletion of FABP5 did not affect the development of atherosclerosis. These findings, along with previous reports, suggest a novel notion that FABP5 is a sensitive marker for bone marrow-derived lipid-rich macrophages in the luminal side of atherosclerotic lesions, although its functional significance remains elusive.
Asunto(s)
Aterosclerosis/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Células Espumosas/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Aterosclerosis/inmunología , Ratones Noqueados para ApoERESUMEN
Dementia is a major public health concern nowadays. Reduced levels of brain docosahexaenoic acid (DHA) and DHA-phosphatidylcholines (DHA-PCs) in dementia patients were reported previously. Recently, we have reported that supplementation of green nut oil (GNO) or DHA improves memory function and distribution levels of brain DHA in senescence accelerated mice P8 (SAMP8). GNO is extracted from Plukenetia volubilis seeds, and SAMP8 is a well-known model mouse of dementia. In this current study, we examined the results of GNO or DHA supplementation in the distribution levels of brain DHA-PCs in same model mouse of dementia using desorption electrospray ionization (DESI) mass spectrometry imaging (MSI). We observed significantly decreased distribution of brain DHA-PCs, PC (16:0_22:6), and PC (18:0_22:6) in SAMP8 mice compared to wild type mice, and GNO or DHA treatment restored the decreased distribution levels of PC (16:0_22:6) and PC (18:0_22:6) in the brain of SAMP8 mice. These results indicate that GNO or DHA supplementation can ameliorate the decreased distribution of brain DHA-PCs in dementia, and could be potentially used for the prevention and treatment of dementia.
RESUMEN
The vermilion of the human lip is a unique facial area because of certain distinguishing features from the adjacent tissues such as the white lip (skin) and oral mucosa. However, the distinction in terms of molecular distribution between the vermilion and skin has remained unexplored. Therefore, we aimed to map the human lip by mass spectrometry imaging to gain understanding of the free fatty acid distribution in the vermilion. The lip specimens trimmed off during cheiloplasty were analyzed using desorption electrospray ionization-mass spectrometry imaging. Distributions of two monounsaturated fatty acids and three polyunsaturated fatty acids were observed in the human lip tissue: palmitoleic acid (POA) and oleic acid (OA) and linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA), respectively. Although POA, OA, LA, and AA were differentially distributed across the vermilion and skin, DHA showed a higher accumulation in the epithelium of the vermilion compared to that in the skin. Our results clearly demonstrated the difference in fatty acid distributions between the vermilion and skin. The highly abundant DHA in the epithelium of the vermilion may have an antioxidant role and may thus protect the lip from aging. Our findings can provide a novel strategy for treating lip disorders.
Asunto(s)
Ácidos Docosahexaenoicos/análisis , Labio/química , Labio/cirugía , Piel/química , Ácido Araquidónico/análisis , Ácidos Grasos Monoinsaturados/análisis , Femenino , Humanos , Lactante , Ácido Linoleico/análisis , Masculino , Espectrometría de Masas , Ácido Oléico/análisis , Espectrometría de Masa por Ionización de Electrospray , Distribución TisularRESUMEN
Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has significant healthbenefits. Previous studies reported decreased levels of DHA and DHA-containing phosphatidylcholines inthe brain of animals suffering from Alzheimer's disease, the most common type of dementia; furthermore,DHA supplementation has been found to improve brain DHA levels and memory efficiency in dementia. Oilextracted from the seeds of Plukenetia volubilis (green nut oil; GNO) is also expected to have DHA like effectsas it contains approximately 50% α-linolenic acid, a precursor of DHA. Despite this, changes in the spatialdistribution of DHA in the brain of animals with dementia following GNO or DHA supplementation remainunexplored. In this study, desorption electrospray ionization imaging mass spectrometry (DESI-IMS) wasapplied to observe the effects of GNO or DHA supplementation upon the distribution of DHA in the brain ofmale senescence-accelerated mouse-prone 8 (SAMP8) mice, a mouse model of dementia. DESI-IMS revealedthat brain DHA distribution increased 1.85-fold and 3.67-fold in GNO-fed and DHA-fed SAMP8 mice,respectively, compared to corn oil-fed SAMP8 mice. Memory efficiency in SAMP8 mice was also improvedby GNO or DHA supplementation. In summary, this study suggests the possibility of GNO or DHAsupplementation for the prevention of dementia.
Asunto(s)
Conducta Animal , Encéfalo/metabolismo , Demencia/prevención & control , Ácidos Docosahexaenoicos/administración & dosificación , Euphorbiaceae/química , Memoria , Nueces/química , Aceites de Plantas/administración & dosificación , Alimentación Animal , Animales , Encéfalo/fisiopatología , Demencia/metabolismo , Demencia/fisiopatología , Demencia/psicología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Masculino , Aprendizaje por Laberinto , Aceites de Plantas/metabolismo , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
Aging has been established as a major risk factor for prevalent diseases and hence, the development of anti-aging medicines is of great importance. Recently, herbal fermented beverages have emerged as a promising source of potential anti-aging drug. Pru, a traditional Cuban refreshment produced by decoction and fermentation of multispecies plants with sugar, has been consumed for many years and is claimed to have multiple medicinal properties. Besides the traditional method, Pru is also manufactured industrially. The present study analyzed the major components of both traditional Pru (TP) and industrial Pru (IP) to reveal their potential application in promoting the health span. We performed desorption electrospray ionization-mass spectrometry (DESI-MS) and acquired mass spectra by scanning over the 50-1200 m/z range in both positive and negative ion modes. Fourier transform ion cyclotron resonance (FTICR) tandem mass spectrometry (MS/MS) was performed for validating the compound assignments. Three important compounds were identified by comparing the MS and MS/MS spectra with reported literature and the online database. One of the identified compounds, gluconic acid, was found to be the most abundant shared metabolite between TP and IP whereas the other two compounds, magnoflorine and levan were exclusively detected in TP. The present study is the first report of component profiling in Cuban traditional and industrial Pru using DESI-MS and FTICR MS/MS, and reveals the potential application of Pru as a health-promoting agent.
Asunto(s)
Envejecimiento/efectos de los fármacos , Bebidas/análisis , Extractos Vegetales/farmacología , Humanos , Medicina Tradicional , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en TándemRESUMEN
Current histological and anatomical analysis techniques, including fluorescence in situ hybridisation, immunohistochemistry, immunofluorescence, immunoelectron microscopy and fluorescent fusion protein, have revealed great distribution diversity of mRNA and proteins in the brain. However, the distributional pattern of small biomolecules, such as lipids, remains unclear. To this end, we have developed and optimised imaging mass spectrometry (IMS), a combined technique incorporating mass spectrometry and microscopy, which is capable of comprehensively visualising biomolecule distribution. We demonstrated the differential distribution of phospholipids throughout the cell body and axon of neuronal cells using IMS analysis. In this study, we used solarix XR, a high mass resolution and highly sensitive MALDI-FT-ICR-MS capable of detecting higher number of molecules than conventional MALDI-TOF-MS instruments, to create a molecular distribution dataset. We examined the diversity of biomolecule distribution in rat brains using IMS and hypothesised that unsupervised machine learning reconstructs brain structures such as the grey and white matters. We have demonstrated that principal component analysis (PCA) can reassemble the grey and white matters without assigning brain anatomical regions. Hierarchical clustering allowed us to classify the 10 groups of observed molecules according to their distributions. Furthermore, the group of molecules specifically localised in the cerebellar cortex was estimated to be composed of phospholipids.
Asunto(s)
Sustancia Gris/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Aprendizaje Automático no Supervisado , Sustancia Blanca/diagnóstico por imagen , Animales , Corteza Cerebelosa/diagnóstico por imagen , Corteza Cerebelosa/metabolismo , Análisis por Conglomerados , Hidroxibenzoatos/metabolismo , Masculino , Reconocimiento de Normas Patrones Automatizadas , Fosfolípidos/metabolismo , Ratas Wistar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentaciónRESUMEN
OBJECTIVE: n-3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on atherosclerosis. Although specific salutary actions have been reported, the detailed distribution of n-3 polyunsaturated fatty acids in plaque and their relevance in disease progression are unclear. Our aim was to assess the pharmacodynamics of EPA and DHA and their metabolites in atherosclerotic plaques. Approach and Results: Apolipoprotein E-deficient (Apoe-/-) mice were fed a Western diet supplemented with EPA (1%, w/w) or DHA (1%, w/w) for 3 weeks. Imaging mass spectrometry analyses were performed in the aortic root and arch of the Apoe-/- mice to evaluate the distribution of EPA, DHA, their metabolites and the lipids containing EPA or DHA in the plaques. Liquid chromatography-mass spectrometry and histological analysis were also performed. The intima-media thickness of atherosclerotic plaque decreased in plaques containing free EPA and EPAs attached with several lipids. EPA was distributed more densely in the thin-cap plaques than in the thick-cap plaques, while DHA was more evenly distributed. In the aortic root, the distribution of total EPA level and cholesteryl esters containing EPA followed a concentration gradient from the vascular endothelium to the media. In the aortic arch, free EPA and 12-hydroxy-EPA colocalized with M2 macrophage. CONCLUSIONS: Administered EPA tends to be incorporated from the vascular lumen side and preferentially taken into the thin-cap plaque.
Asunto(s)
Ácido Eicosapentaenoico/administración & dosificación , Placa Aterosclerótica/tratamiento farmacológico , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Animales , Ésteres del Colesterol/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/metabolismo , Túnica Íntima/patologíaRESUMEN
Clear cell renal cell carcinoma (ccRCC) often results in recurrence or metastasis, and there are only a few clinically effective biomarkers for early diagnosis and personalized therapy. Metabolic changes have been widely studied using mass spectrometry (MS) of tissue lysates to identify novel biomarkers. Our objective was to identify lipid biomarkers that can predict disease progression in ccRCC by a tissue-based approach. We retrospectively investigated lipid molecules in cancerous tissues and normal renal cortex tissues obtained from patients with ccRCC (n = 47) using desorption electrospray ionization imaging mass spectrometry (DESI-IMS). We selected eight candidate lipid biomarkers showing higher signal intensity in cancerous than in normal tissues, with a clear distinction of the tissue type based on the images. Of these candidates, low maximum intensity ratio (cancerous/normal) values of ions of oleic acid, m/z 389.2, and 391.3 significantly correlated with shorter progression-free survival compared with high maximum intensity ratio values (P = 0.011, P = 0.022, and P < 0.001, respectively). This study identified novel lipid molecules contributing to the prediction of disease progression in ccRCC using DESI-IMS. Our findings on lipid storage may provide a new diagnostic or therapeutic strategy for targeting cancer cell metabolism.
RESUMEN
In the current study, we aimed to analyze the lipid changes in the dorsal root ganglion (DRG) after sciatic nerve transection (SNT) using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). We found that the arachidonic acid-containing phosphatidylcholine (AA-PC), PC(16:0/20:4) largely increased, while PC(16:0/18:1), PC(18:0/18:1) and phosphatidic acid (PA)(36:2) levels largely decreased in the DRG following nerve injury. Previous studies show that the increase in PC(16:0/20:4) was associated with neuropathic pain and that decrease in PC(16:0/18:1), PC(18:0/18:1), and PA(36:2) were due to producing lysophosphatidic acid (LPA), an initiator for neuropathic pain. These results suggest that the lipid changes in DRG after SNT could be the result of changes for the cause of neuropathic pain. Thus, blocking of LPA could be potential for treatment of neuropathic pain.
Asunto(s)
Ácido Araquidónico/metabolismo , Ganglios Espinales/metabolismo , Lisofosfolípidos/metabolismo , Fosfatidilcolinas/metabolismo , Animales , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Ácidos Fosfatidicos/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismoRESUMEN
Biomolecule abundance levels change with the environment and enable a living system to adapt to the new conditions. Although, the living system maintains at least some characteristics, e.g. homeostasis. One of the characteristics maintained by a living system is a power law distribution of biomolecule abundance levels. Previous studies have pointed to a universal characteristic of biochemical reaction networks, with data obtained from lysates of multiple cells. As a result, the spatial scale of the data related to the power law distribution of biomolecule abundance levels is not clear. In this study, we researched the scaling law of metabolites in mouse tissue with a spatial scale of quantification that was changed stepwise between a whole-tissue section and a single-point analysis (25 µm). As a result, metabolites in mouse tissues were found to follow the power law distribution independently of the spatial scale of analysis. Additionally, we tested the temporal changes by comparing data from younger and older mice. Both followed similar power law distributions, indicating that metabolite composition is not diversified by aging to disrupt the power law distribution. The power law distribution of metabolite abundance is thus a robust characteristic of a living system regardless of time and space.