Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0304603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870196

RESUMEN

Iatrogenic transmission of prions, the infectious agents of fatal Creutzfeldt-Jakob disease, through inefficiently decontaminated medical instruments remains a critical issue. Harsh chemical treatments are effective, but not suited for routine reprocessing of reusable surgical instruments in medical cleaning and disinfection processes due to material incompatibilities. The identification of mild detergents with activity against prions is therefore of high interest but laborious due to the low throughput of traditional assays measuring prion infectivity. Here, we report the establishment of TESSA (sTainlESs steel-bead Seed Amplification assay), a modified real-time quaking induced cyclic amplification (RT-QuIC) assay that explores the propagation activity of prions with stainless steel beads. TESSA was applied for the screening of about 70 different commercially available and novel formulations and conditions for their prion inactivation efficacy. One hypochlorite-based formulation, two commercially available alkaline formulations and a manual alkaline pre-cleaner were found to be highly effective in inactivating prions under conditions simulating automated washer-disinfector cleaning processes. The efficacy of these formulations was confirmed in vivo in a murine prion infectivity bioassay, yielding a reduction of the prion titer for bead surface adsorbed prions below detectability. Our data suggest that TESSA represents an effective method for a rapid screening of prion-inactivating detergents, and that alkaline and oxidative formulations are promising in reducing the risk of potential iatrogenic prion transmission through insufficiently decontaminated instrument surfaces.


Asunto(s)
Priones , Acero Inoxidable , Instrumentos Quirúrgicos , Animales , Ratones , Acero Inoxidable/química , Descontaminación/métodos , Síndrome de Creutzfeldt-Jakob/transmisión , Síndrome de Creutzfeldt-Jakob/prevención & control , Desinfección/métodos , Detergentes/química , Detergentes/farmacología , Humanos , Desinfectantes/farmacología , Oxidación-Reducción
2.
EMBO J ; 41(23): e112338, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36254605

RESUMEN

A defining characteristic of mammalian prions is their capacity for self-sustained propagation. Theoretical considerations and experimental evidence suggest that prion propagation is modulated by cell-autonomous and non-autonomous modifiers. Using a novel quantitative phospholipase protection assay (QUIPPER) for high-throughput prion measurements, we performed an arrayed genome-wide RNA interference (RNAi) screen aimed at detecting cellular host-factors that can modify prion propagation. We exposed prion-infected cells in high-density microplates to 35,364 ternary pools of 52,746 siRNAs targeting 17,582 genes representing the majority of the mouse protein-coding transcriptome. We identified 1,191 modulators of prion propagation. While 1,151 modified the expression of both the pathological prion protein, PrPSc , and its cellular counterpart, PrPC , 40 genes selectively affected PrPSc . Of the latter 40 genes, 20 augmented prion production when suppressed. A prominent limiter of prion propagation was the heterogeneous nuclear ribonucleoprotein Hnrnpk. Psammaplysene A (PSA), which binds Hnrnpk, reduced prion levels in cultured cells and protected them from cytotoxicity. PSA also reduced prion levels in infected cerebellar organotypic slices and alleviated locomotor deficits in prion-infected Drosophila melanogaster expressing ovine PrPC . Hence, genome-wide QUIPPER-based perturbations can discover actionable cellular pathways involved in prion propagation. Further, the unexpected identification of a prion-controlling ribonucleoprotein suggests a role for RNA in the generation of infectious prions.


Asunto(s)
Enfermedades por Prión , Priones , Ratones , Animales , Ovinos/genética , Priones/genética , Priones/metabolismo , Drosophila melanogaster/genética , Ribonucleoproteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Mamíferos/genética
3.
Nat Struct Mol Biol ; 29(8): 831-840, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948768

RESUMEN

Prion infections cause conformational changes of the cellular prion protein (PrPC) and lead to progressive neurological impairment. Here we show that toxic, prion-mimetic ligands induce an intramolecular R208-H140 hydrogen bond ('H-latch'), altering the flexibility of the α2-α3 and ß2-α2 loops of PrPC. Expression of a PrP2Cys mutant mimicking the H-latch was constitutively toxic, whereas a PrPR207A mutant unable to form the H-latch conferred resistance to prion infection. High-affinity ligands that prevented H-latch induction repressed prion-related neurodegeneration in organotypic cerebellar cultures. We then selected phage-displayed ligands binding wild-type PrPC, but not PrP2Cys. These binders depopulated H-latched conformers and conferred protection against prion toxicity. Finally, brain-specific expression of an antibody rationally designed to prevent H-latch formation prolonged the life of prion-infected mice despite unhampered prion propagation, confirming that the H-latch is an important reporter of prion neurotoxicity.


Asunto(s)
Proteínas PrPC , Priones , Animales , Anticuerpos/metabolismo , Cerebelo/metabolismo , Ligandos , Ratones , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas Priónicas/química , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/metabolismo , Priones/toxicidad
4.
Eur J Neurol ; 29(8): 2431-2438, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35524506

RESUMEN

BACKGROUND AND PURPOSE: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) has a high degree of sensitivity and specificity for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) and this has led to its being included in revised European CJD Surveillance Network diagnostic criteria for sCJD. As CSF RT-QuIC becomes more widely established, it is crucial that the analytical performance of individual laboratories is consistent. The aim of this ring-trial was to ascertain the degree of concordance between European countries undertaking CSF RT-QuIC. METHODS: Ten identical CSF samples, seven from probable or neuropathologically confirmed sCJD and three from non-CJD cases, were sent to 13 laboratories from 11 countries for RT-QuIC analysis. A range of instrumentation and different recombinant prion protein substrates were used. Each laboratory analysed the CSF samples blinded to the diagnosis and reported the results as positive or negative. RESULTS: All 13 laboratories correctly identified five of the seven sCJD cases and the remaining two sCJD cases were identified by 92% of laboratories. Of the two sCJD cases that were not identified by all laboratories, one had a disease duration >26 months with a negative 14-3-3, whilst the remaining case had a 4-month disease duration and a positive 14-3-3. A single false positive CSF RT-QuIC result was observed in this study. CONCLUSIONS: This study shows that CSF RT-QuIC demonstrates an excellent concordance between centres, even when using a variety of instrumentation, recombinant prion protein substrates and CSF volumes. The adoption of CSF RT-QuIC by all CJD surveillance centres is recommended.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Proteínas Priónicas , Priones/líquido cefalorraquídeo , Proteínas Recombinantes , Sensibilidad y Especificidad
5.
Sci Adv ; 7(48): eabj1826, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34818048

RESUMEN

The prion protein (PrPC) is a central player in neurodegenerative diseases, such as prion diseases or Alzheimer's disease. In contrast to disease-promoting cell surface PrPC, extracellular fragments act neuroprotective by blocking neurotoxic disease-associated protein conformers. Fittingly, PrPC release by the metalloprotease ADAM10 represents a protective mechanism. We used biochemical, cell biological, morphological, and structural methods to investigate mechanisms stimulating this proteolytic shedding. Shed PrP negatively correlates with prion conversion and is markedly redistributed in murine brain in the presence of prion deposits or amyloid plaques, indicating a sequestrating activity. PrP-directed ligands cause structural changes in PrPC and increased shedding in cells and organotypic brain slice cultures. As an exception, some PrP-directed antibodies targeting repetitive epitopes do not cause shedding but surface clustering, endocytosis, and degradation of PrPC. Both mechanisms may contribute to beneficial actions described for PrP-directed ligands and pave the way for new therapeutic strategies against currently incurable neurodegenerative diseases.

6.
PLoS Pathog ; 17(10): e1010013, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34705895

RESUMEN

The cellular prion protein PrPC is necessary for prion replication, and its reduction greatly increases life expectancy in animal models of prion infection. Hence the factors controlling the levels of PrPC may represent therapeutic targets against human prion diseases. Here we performed an arrayed whole-transcriptome RNA interference screen to identify modulators of PrPC expression. We cultured human U251-MG glioblastoma cells in the presence of 64'752 unique siRNAs targeting 21'584 annotated human genes, and measured PrPC using a one-pot fluorescence-resonance energy transfer immunoassay in 51'128 individual microplate wells. This screen yielded 743 candidate regulators of PrPC. When downregulated, 563 of these candidates reduced and 180 enhanced PrPC expression. Recursive candidate attrition through multiple secondary screens yielded 54 novel regulators of PrPC, 9 of which were confirmed by CRISPR interference as robust regulators of PrPC biosynthesis and degradation. The phenotypes of 6 of the 9 candidates were inverted in response to transcriptional activation using CRISPRa. The RNA-binding post-transcriptional repressor Pumilio-1 was identified as a potent limiter of PrPC expression through the degradation of PRNP mRNA. Because of its hypothesis-free design, this comprehensive genetic-perturbation screen delivers an unbiased landscape of the genes regulating PrPC levels in cells, most of which were unanticipated, and some of which may be amenable to pharmacological targeting in the context of antiprion therapies.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas PrPC/biosíntesis , Proteínas de Unión al ARN/metabolismo , Línea Celular , Estudio de Asociación del Genoma Completo , Humanos , Interferencia de ARN
7.
EMBO Mol Med ; 13(9): e14745, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34309222

RESUMEN

While the initial pathology of Parkinson's disease and other α-synucleinopathies is often confined to circumscribed brain regions, it can spread and progressively affect adjacent and distant brain locales. This process may be controlled by cellular receptors of α-synuclein fibrils, one of which was proposed to be the LAG3 immune checkpoint molecule. Here, we analysed the expression pattern of LAG3 in human and mouse brains. Using a variety of methods and model systems, we found no evidence for LAG3 expression by neurons. While we confirmed that LAG3 interacts with α-synuclein fibrils, the specificity of this interaction appears limited. Moreover, overexpression of LAG3 in cultured human neural cells did not cause any worsening of α-synuclein pathology ex vivo. The overall survival of A53T α-synuclein transgenic mice was unaffected by LAG3 depletion, and the seeded induction of α-synuclein lesions in hippocampal slice cultures was unaffected by LAG3 knockout. These data suggest that the proposed role of LAG3 in the spreading of α-synucleinopathies is not universally valid.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , Ratones , Ratones Transgénicos , Neuronas , alfa-Sinucleína/genética
8.
PLoS Pathog ; 17(6): e1009628, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061899

RESUMEN

Bovine spongiform encephalopathy (BSE) is a prion disease of cattle that is caused by the misfolding of the cellular prion protein (PrPC) into an infectious conformation (PrPSc). PrPC is a predominantly α-helical membrane protein that misfolds into a ß-sheet rich, infectious state, which has a high propensity to self-assemble into amyloid fibrils. Three strains of BSE prions can cause prion disease in cattle, including classical BSE (C-type) and two atypical strains, named L-type and H-type BSE. To date, there is no detailed information available about the structure of any of the infectious BSE prion strains. In this study, we purified L-type BSE prions from transgenic mouse brains and investigated their biochemical and ultrastructural characteristics using electron microscopy, image processing, and immunogold labeling techniques. By using phosphotungstate anions (PTA) to precipitate PrPSc combined with sucrose gradient centrifugation, a high yield of proteinase K-resistant BSE amyloid fibrils was obtained. A morphological examination using electron microscopy, two-dimensional class averages, and three-dimensional reconstructions revealed two structural classes of L-type BSE amyloid fibrils; fibrils that consisted of two protofilaments with a central gap and an average width of 22.5 nm and one-protofilament fibrils that were 10.6 nm wide. The one-protofilament fibrils were found to be more abundant compared to the thicker two-protofilament fibrils. Both fibrillar assemblies were successfully decorated with monoclonal antibodies against N- and C-terminal epitopes of PrP using immunogold-labeling techniques, confirming the presence of polypeptides that span residues 100-110 to 227-237. The fact that the one-protofilament fibrils contain both N- and C-terminal PrP epitopes constrains molecular models for the structure of the infectious conformer in favour of a compact four-rung ß-solenoid fold.


Asunto(s)
Encefalopatía Espongiforme Bovina , Modelos Moleculares , Proteínas PrPSc/química , Animales , Bovinos , Ratones , Ratones Transgénicos
9.
Nat Struct Mol Biol ; 28(4): 365-372, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767451

RESUMEN

Prions consist of pathological aggregates of cellular prion protein and have the ability to replicate, causing neurodegenerative diseases, a phenomenon mirrored in many other diseases connected to protein aggregation, including Alzheimer's and Parkinson's diseases. However, despite their key importance in disease, the individual processes governing this formation of pathogenic aggregates, as well as their rates, have remained challenging to elucidate in vivo. Here we bring together a mathematical framework with kinetics of the accumulation of prions in mice and microfluidic measurements of aggregate size to dissect the overall aggregation reaction into its constituent processes and quantify the reaction rates in mice. Taken together, the data show that multiplication of prions in vivo is slower than in in vitro experiments, but efficient when compared with other amyloid systems, and displays scaling behavior characteristic of aggregate fragmentation. These results provide a framework for the determination of the mechanisms of disease-associated aggregation processes within living organisms.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Parkinson/genética , Priones/genética , Agregación Patológica de Proteínas/genética , Enfermedad de Alzheimer/patología , Amiloide/genética , Animales , Humanos , Ratones , Modelos Teóricos , Enfermedad de Parkinson/patología
10.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33731477

RESUMEN

The misfolding and aggregation of the human prion protein (PrP) is associated with transmissible spongiform encephalopathies (TSEs). Intermediate conformations forming during the conversion of the cellular form of PrP into its pathological scrapie conformation are key drivers of the misfolding process. Here, we analyzed the properties of the C-terminal domain of the human PrP (huPrP) and its T183A variant, which is associated with familial forms of TSEs. We show that the mutation significantly enhances the aggregation propensity of huPrP, such as to uniquely induce amyloid formation under physiological conditions by the sole C-terminal domain of the protein. Using NMR spectroscopy, biophysics, and metadynamics simulations, we identified the structural characteristics of the misfolded intermediate promoting the aggregation of T183A huPrP and the nature of the interactions that prevent this species to be populated in the wild-type protein. In support of these conclusions, POM antibodies targeting the regions that promote PrP misfolding were shown to potently suppress the aggregation of this amyloidogenic mutant.


Asunto(s)
Mutación , Proteínas Priónicas/química , Proteínas Priónicas/genética , Pliegue de Proteína , Amiloide/química , Amiloide/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Enfermedades por Prión/etiología , Enfermedades por Prión/metabolismo , Priones , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica , Deficiencias en la Proteostasis , Relación Estructura-Actividad
11.
EMBO Mol Med ; 12(9): e12739, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32776637

RESUMEN

Prion immunotherapy may hold great potential, but antibodies against certain PrP epitopes can be neurotoxic. Here, we identified > 6,000 PrP-binding antibodies in a synthetic human Fab phage display library, 49 of which we characterized in detail. Antibodies directed against the flexible tail of PrP conferred neuroprotection against infectious prions. We then mined published repertoires of circulating B cells from healthy humans and found antibodies similar to the protective phage-derived antibodies. When expressed recombinantly, these antibodies exhibited anti-PrP reactivity. Furthermore, we surveyed 48,718 samples from 37,894 hospital patients for the presence of anti-PrP IgGs and found 21 high-titer individuals. The clinical files of these individuals did not reveal any enrichment of specific pathologies, suggesting that anti-PrP autoimmunity is innocuous. The existence of anti-prion antibodies in unbiased human immunological repertoires suggests that they might clear nascent prions early in life. Combined with the reported lack of such antibodies in carriers of disease-associated PRNP mutations, this suggests a link to the low incidence of spontaneous prion diseases in human populations.


Asunto(s)
Enfermedades por Prión , Priones , Anticuerpos , Linfocitos B , Humanos , Inmunoterapia
12.
Life Sci Alliance ; 3(8)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32606072

RESUMEN

Transmission of prion infectivity to susceptible murine cell lines has simplified prion titration assays and has greatly reduced the need for animal experimentation. However, murine cell models suffer from technical and biological constraints. Human cell lines might be more useful, but they are much more biohazardous and are often poorly infectible. Here, we describe the human clonal cell line hovS, which lacks the human PRNP gene and expresses instead the ovine PRNP VRQ allele. HovS cells were highly susceptible to the PG127 strain of sheep-derived murine prions, reaching up to 90% infected cells in any given culture and were maintained in a continuous infected state for at least 14 passages. Infected hovS cells produced proteinase K-resistant prion protein (PrPSc), pelletable PrP aggregates, and bona fide infectious prions capable of infecting further generations of naïve hovS cells and mice expressing the VRQ allelic variant of ovine PrPC Infection in hovS led to prominent cytopathic vacuolation akin to the spongiform changes observed in individuals suffering from prion diseases. In addition to expanding the toolbox for prion research to human experimental genetics, the hovS cell line provides a human-derived system that does not require human prions. Hence, the manipulation of scrapie-infected hovS cells may present fewer biosafety hazards than that of genuine human prions.


Asunto(s)
Proteínas Priónicas/genética , Priones/genética , Priones/metabolismo , Animales , Bioensayo , Línea Celular , Susceptibilidad a Enfermedades , Transmisión de Enfermedad Infecciosa , Humanos , Enfermedades por Prión/genética , Proteínas Priónicas/metabolismo , Priones/fisiología , Scrapie/genética , Ovinos/genética , Oveja Doméstica/genética
13.
PLoS Pathog ; 16(6): e1008653, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32598380

RESUMEN

The clinical course of prion diseases is accurately predictable despite long latency periods, suggesting that prion pathogenesis is driven by precisely timed molecular events. We constructed a searchable genome-wide atlas of mRNA abundance and splicing alterations during the course of disease in prion-inoculated mice. Prion infection induced PrP-dependent transient changes in mRNA abundance and processing already at eight weeks post inoculation, well ahead of any neuropathological and clinical signs. In contrast, microglia-enriched genes displayed an increase simultaneous with the appearance of clinical signs, whereas neuronal-enriched transcripts remained unchanged until the very terminal stage of disease. This suggests that glial pathophysiology, rather than neuronal demise, could be the final driver of disease. The administration of young plasma attenuated the occurrence of early mRNA abundance alterations and delayed signs in the terminal phase of the disease. The early onset of prion-induced molecular changes might thus point to novel biomarkers and potential interventional targets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Microglía/metabolismo , Neuronas/metabolismo , Enfermedades por Prión , ARN Mensajero , Transcriptoma , Animales , Masculino , Ratones , Ratones Noqueados , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Brain ; 143(5): 1512-1524, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32303068

RESUMEN

Prions are transmissible agents causing lethal neurodegenerative diseases that are composed of aggregates of misfolded cellular prion protein (PrPSc). Despite non-fibrillar oligomers having been proposed as the most infectious prion particles, prions purified from diseased brains usually consist of large and fibrillar PrPSc aggregates, whose protease-resistant core (PrPres) encompasses the whole C-terminus of PrP. In contrast, PrPSc from Gerstmann-Sträussler-Scheinker disease associated with alanine to valine substitution at position 117 (GSS-A117V) is characterized by a small protease-resistant core, which is devoid of the C-terminus. We thus aimed to investigate the role of this unusual PrPSc in terms of infectivity, strain characteristics, and structural features. We found, by titration in bank voles, that the infectivity of GSS-A117V is extremely high (109.3 ID50 U/g) and is resistant to treatment with proteinase K (109.0 ID50 U/g). We then purified the proteinase K-resistant GSS-A117V prions and determined the amount of infectivity and PrPres in the different fractions, alongside the morphological characteristics of purified PrPres aggregates by electron microscopy. Purified pellet fractions from GSS-A117V contained the expected N- and C-terminally cleaved 7 kDa PrPres, although the yield of PrPres was low. We found that this low yield depended on the low density/small size of GSS-A117V PrPres, as it was mainly retained in the last supernatant fraction. All fractions were highly infectious, thus confirming the infectious nature of the 7 kDa PrPres, with infectivity levels that directly correlated with the PrPres amount detected. Finally, electron microscopy analysis of these fractions showed no presence of amyloid fibrils, but only very small and indistinct, non-fibrillar PrPresparticles were detected and confirmed to contain PrP via immunogold labelling. Our study demonstrates that purified aggregates of 7 kDa PrPres, spanning residues ∼90-150, are highly infectious oligomers that encode the biochemical and biological strain features of the original sample. Overall, the autocatalytic behaviour of the prion oligomers reveals their role in the propagation of neurodegeneration in patients with Gerstmann-Sträussler-Scheinker disease and implies that the C-terminus of PrPSc is dispensable for infectivity and strain features for this prion strain, uncovering the central PrP domain as the minimal molecular component able to encode infectious prions. These findings are consistent with the hypothesis that non-fibrillar prion particles are highly efficient propagators of disease and provide new molecular and morphological constraints on the structure of infectious prions.


Asunto(s)
Enfermedad de Gerstmann-Straussler-Scheinker/transmisión , Proteínas PrPSc/química , Proteínas PrPSc/aislamiento & purificación , Proteínas PrPSc/patogenicidad , Animales , Arvicolinae , Humanos
15.
Neurology ; 95(14): e2028-e2037, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32098855

RESUMEN

OBJECTIVE: To determine whether naturally occurring autoantibodies against the prion protein are present in individuals with genetic prion disease mutations and controls, and if so, whether they are protective against prion disease. METHODS: In this case-control study, we collected 124 blood samples from individuals with a variety of pathogenic PRNP mutations and 78 control individuals with a positive family history of genetic prion disease but lacking disease-associated PRNP mutations. Antibody reactivity was measured using an indirect ELISA for the detection of human immunoglobulin G1-4 antibodies against wild-type human prion protein. Multivariate linear regression models were constructed to analyze differences in autoantibody reactivity between (1) PRNP mutation carriers vs controls and (2) asymptomatic vs symptomatic PRNP mutation carriers. Robustness of results was examined in matched cohorts. RESULTS: We found that antibody reactivity was present in a subset of both PRNP mutation carriers and controls. Autoantibody levels were not influenced by PRNP mutation status or clinical manifestation of prion disease. Post hoc analyses showed anti-PrPC autoantibody titers to be independent of personal history of autoimmune disease and other immunologic disorders, as well as PRNP codon 129 polymorphism. CONCLUSIONS: Pathogenic PRNP variants do not notably stimulate antibody-mediated anti-PrPC immunity. Anti-PrPC immunoglobulin G autoantibodies are not associated with the onset of prion disease. The presence of anti-PrPC autoantibodies in the general population without any disease-specific association suggests that relatively high titers of naturally occurring antibodies are well-tolerated. CLINICALTRIALSGOV IDENTIFIER: NCT02837705.


Asunto(s)
Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Proteínas Priónicas/genética , Proteínas Priónicas/inmunología , Estudios de Casos y Controles , Femenino , Heterocigoto , Humanos , Masculino , Mutación
16.
PLoS One ; 14(9): e0216013, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31513666

RESUMEN

Prions cause transmissible infectious diseases in humans and animals and have been found to be transmissible by blood transfusion even in the presymptomatic stage. However, the concentration of prions in body fluids such as blood and urine is extremely low; therefore, direct diagnostic tests on such specimens often yield false-negative results. Quantitative preanalytical prion enrichment may significantly improve the sensitivity of prion assays by concentrating trace amounts of prions from large volumes of body fluids. Here, we show that beads conjugated to positively charged peptoids not only captured PrP aggregates from plasma of prion-infected hamsters, but also adsorbed prion infectivity in both the symptomatic and preclinical stages of the disease. Bead absorbed prion infectivity efficiently transmitted disease to transgenic indicator mice. We found that the readout of the peptoid-based misfolded protein assay (MPA) correlates closely with prion infectivity in vivo, thereby validating the MPA as a simple, quantitative, and sensitive surrogate indicator of the presence of prions. The reliable and sensitive detection of prions in plasma will enable a wide variety of applications in basic prion research and diagnostics.


Asunto(s)
Bioensayo/métodos , Microesferas , Peptoides , Enfermedades por Prión/sangre , Enfermedades por Prión/diagnóstico , Priones/sangre , Animales , Biomarcadores , Corteza Cerebral/metabolismo , Cricetinae , Modelos Animales de Enfermedad , Ratones , Peptoides/química , Enfermedades por Prión/mortalidad , Sensibilidad y Especificidad
17.
Neurobiol Aging ; 76: 208-213, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30743056

RESUMEN

Progression of prion diseases is driven by the accumulation of prions in the brain. Ablation of microglia or deletion of the eat-me-signal, milk-fat globule epidermal growth factor VIII (Mfge8), accelerates prion pathogenesis, suggesting that microglia defend the brain by phagocytosing prions. Similar to Mfge8, developmental endothelial locus-1 (Del-1) is a secreted protein that acts as an opsonin bridging phagocytes and apoptotic cells to facilitate phagocytosis. We therefore asked whether Del-1 might play a role in controlling prion pathogenesis. We assessed the anti-inflammatory and phagocytosis-promoting functions of Del-1 in prion disease and determined whether Del-1 complements Mfge8 in prion clearance in mice with a C57BL/6J genetic background. We found that Del-1 deficiency did not change prion disease progression or lesion patterns. In addition, prion clearance and scrapie prion protein deposition were unaltered in Del-1-deficient mice. In addition, prion-induced neuroinflammation was not affected by Del-1 deficiency. We conclude that Del-1 is not a major determinant of prion pathogenesis in this context.


Asunto(s)
Eliminación de Gen , Péptidos y Proteínas de Señalización Intercelular/genética , Microglía/inmunología , Fagocitosis/genética , Enfermedades por Prión/genética , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular , Inflamación , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades por Prión/inmunología , Priones/inmunología
18.
PLoS Pathog ; 14(11): e1007424, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30496289

RESUMEN

Transmissible spongiform encephalopathies (TSEs) are caused by the prion, which consists essentially of PrPSc, an aggregated, conformationally modified form of the cellular prion protein (PrPC). Although TSEs can be experimentally transmitted by intracerebral inoculation, most instances of infection in the field occur through extracerebral routes. The epidemics of kuru and variant Creutzfeldt-Jakob disease were caused by dietary exposure to prions, and parenteral administration of prion-contaminated hormones has caused hundreds of iatrogenic TSEs. In all these instances, the development of postexposure prophylaxis relies on understanding of how prions propagate from the site of entry to the brain. While much evidence points to lymphoreticular invasion followed by retrograde transfer through peripheral nerves, prions are present in the blood and may conceivably cross the blood-brain barrier directly. Here we have addressed the role of the blood-brain barrier (BBB) in prion disease propagation using Pdgfbret/ret mice which possess a highly permeable BBB. We found that Pdgfbret/ret mice have a similar prion disease incubation time as their littermate controls regardless of the route of prion transmission. These surprising results indicate that BBB permeability is irrelevant to the initiation of prion disease, even when prions are administered parenterally.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Animales , Transporte Biológico , Encéfalo/irrigación sanguínea , Encéfalo/patología , Bovinos , Síndrome de Creutzfeldt-Jakob/patología , Modelos Animales de Enfermedad , Encefalopatía Espongiforme Bovina/patología , Humanos , Ratones , Enfermedades por Prión/transmisión , Proteínas Priónicas/metabolismo , Priones/patogenicidad , Scrapie/patología
19.
PLoS Pathog ; 14(10): e1007335, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30273408

RESUMEN

Antibodies to the prion protein, PrP, represent a promising therapeutic approach against prion diseases but the neurotoxicity of certain anti-PrP antibodies has caused concern. Here we describe scPOM-bi, a bispecific antibody designed to function as a molecular prion tweezer. scPOM-bi combines the complementarity-determining regions of the neurotoxic antibody POM1 and the neuroprotective POM2, which bind the globular domain (GD) and flexible tail (FT) respectively. We found that scPOM-bi confers protection to prion-infected organotypic cerebellar slices even when prion pathology is already conspicuous. Moreover, scPOM-bi prevents the formation of soluble oligomers that correlate with neurotoxic PrP species. Simultaneous targeting of both GD and FT was more effective than concomitant treatment with the individual molecules or targeting the tail alone, possibly by preventing the GD from entering a toxic-prone state. We conclude that simultaneous binding of the GD and flexible tail of PrP results in strong protection from prion neurotoxicity and may represent a promising strategy for anti-prion immunotherapy.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Cerebelo/inmunología , Inmunoterapia , Enfermedades por Prión/terapia , Proteínas Priónicas/inmunología , Priones/toxicidad , Animales , Anticuerpos Biespecíficos/inmunología , Células Cultivadas , Regiones Determinantes de Complementariedad/inmunología , Ratones , Ratones Transgénicos , Enfermedades por Prión/inmunología , Priones/inmunología
20.
ACS Chem Neurosci ; 9(3): 475-481, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29178774

RESUMEN

Luminescent conjugated polythiophenes bind to amyloid proteins with high affinity. Their fluorescence properties, which are modulated by the detailed conformation in the bound state, are highly sensitive to structural features of the amyloid. Polythiophenes therefore represent diagnostic markers for the detection and differentiation of pathological amyloid aggregates. We clarify the binding site and mode of two different polythiophenes to fibrils of the prion domain of the HET-s protein by solid-state NMR and correlate these findings with their fluorescence properties. We demonstrate how amyloid dyes recognize distinct binding sites with specific topological features. Regularly spaced surface charge patterns and well-accessible grooves on the fibril surface define the pharmacophore of the amyloid, which in turn determines the binding mode and fluorescence wavelength of the polythiophene.


Asunto(s)
Amiloide/metabolismo , Sitios de Unión , Fluorescencia , Polímeros/química , Priones/metabolismo , Tiofenos/química , Proteínas Amiloidogénicas/metabolismo , Humanos , Receptores de Droga/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...