Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18287, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880253

RESUMEN

Moderate cold acclimation (MCA) is a non-invasive intervention mitigating effects of various pathological conditions including myocardial infarction. We aim to determine the shortest cardioprotective regimen of MCA and the response of ß1/2/3-adrenoceptors (ß-AR), its downstream signaling, and inflammatory status, which play a role in cell-survival during myocardial infarction. Adult male Wistar rats were acclimated (9 °C, 1-3-10 days). Infarct size, echocardiography, western blotting, ELISA, mitochondrial respirometry, receptor binding assay, and quantitative immunofluorescence microscopy were carried out on left ventricular myocardium and brown adipose tissue (BAT). MultiPlex analysis of cytokines and chemokines in serum was accomplished. We found that short-term MCA reduced myocardial infarction, improved resistance of mitochondria to Ca2+-overload, and downregulated ß1-ARs. The ß2-ARs/protein kinase B/Akt were attenuated while ß3-ARs translocated on the T-tubular system suggesting its activation. Protein kinase G (PKG) translocated to sarcoplasmic reticulum and phosphorylation of AMPKThr172 increased after 10 days. Principal component analysis revealed a significant shift in cytokine/chemokine serum levels on day 10 of acclimation, which corresponds to maturation of BAT. In conclusion, short-term MCA increases heart resilience to ischemia without any negative side effects such as hypertension or hypertrophy. Cold-elicited cardioprotection is accompanied by ß1/2-AR desensitization, activation of the ß3-AR/PKG/AMPK pathways, and an immunomodulatory effect.


Asunto(s)
Adrenérgicos , Infarto del Miocardio , Ratas , Masculino , Animales , Adrenérgicos/metabolismo , Ratas Wistar , Proteínas Quinasas Activadas por AMP/metabolismo , Miocardio/metabolismo , Infarto del Miocardio/patología
2.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233322

RESUMEN

Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.


Asunto(s)
Cardiomiopatías , Desmina , Hexoquinasa , Aminoácidos/metabolismo , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Citratos/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Desmina/genética , Desmina/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Ratones , Ratones Noqueados , Miocardio/metabolismo , Fosforilación Oxidativa , Proteómica
3.
Physiol Genomics ; 50(7): 532-541, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29676955

RESUMEN

Recently we have shown that adaptation to continuous normobaric hypoxia (CNH) decreases myocardial ischemia/reperfusion injury in spontaneously hypertensive rats (SHR) and in a conplastic strain (SHR-mtBN). The protective effect was stronger in the latter group characterized by a selective replacement of the SHR mitochondrial genome with that of a more ischemia-resistant Brown Norway strain. The aim of the present study was to examine the possible involvement of the hypoxia inducible factor (HIF)-dependent pathway of the protein kinase B/glucose transporters/hexokinase (Akt/GLUT/HK) in this mitochondrial genome-related difference of the cardioprotective phenotype. Adult male rats were exposed for 3 wk to CNH ([Formula: see text] 0.1). The expression of dominant isoforms of Akt, GLUT, and HK in left ventricular myocardium was determined by real-time RT-PCR and Western blotting. Subcellular localization of GLUTs was assessed by quantitative immunofluorescence. Whereas adaptation to hypoxia markedly upregulated protein expression of HK2, GLUT1, and GLUT4 in both rat strains, Akt2 protein level was significantly increased in SHR-mtBN only. Interestingly, a higher content of HK2 was revealed in the sarcoplasmic reticulum-enriched fraction in SHR-mtBN after CNH. The increased activity of HK determined in the mitochondrial fraction after CNH in both strains suggested an increase of HK association with mitochondria. Interestingly, HIF1a mRNA increased and HIF2a mRNA decreased after CNH, the former effect being more pronounced in SHR-mtBN than in SHR. Pleiotropic effects of upregulated Akt2 along with HK translocation to mitochondria and mitochondria-associated membranes can potentially contribute to a stronger CNH-afforded cardioprotection in SHR-mtBN compared with progenitor SHR.


Asunto(s)
Genoma Mitocondrial/genética , Hipoxia , Mitocondrias Cardíacas/genética , Miocardio/metabolismo , Transducción de Señal/genética , Adaptación Fisiológica/genética , Animales , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Hipertensión/genética , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas BN , Ratas Endogámicas SHR , Especificidad de la Especie
4.
Artículo en Inglés | MEDLINE | ID: mdl-30740090

RESUMEN

Remodeling of the cellular distribution of gap junctions formed mainly by connexin-43 (Cx43) can be related to the increased incidence of cardiac arrhythmias. It has been shown that adaptation to chronic intermittent hypobaric hypoxia (IHH) attenuates the incidence and severity of ischemic and reperfusion ventricular arrhythmias and increases the proportion of anti-arrhythmic n-3 polyunsaturated fatty acids (n-3 PUFA) in heart phospholipids. Wistar rats were exposed to simulated IHH (7,000 m, 8-h/day, 35 exposures) and compared with normoxic controls (N). Cx43 expression, phosphorylation, localization and n-3 PUFA proportion were analyzed in left ventricular myocardium. Compared to N, IHH led to higher expression of total Cx43, its variant phosphorylated at Ser368 [p-Cx43(Ser368)], which maintains "end to end" communication, as well as p-Cx43(Ser364/365), which facilitates conductivity. By contrast, expression of non-phosphorylated Cx43 and p-Cx43(Ser278/289), attenuating intercellular communication, was lower in IHH than in N. IHH also resulted in increased expression of protein kinase A and protein kinase G while casein kinase 1 did not change compared to N. In IHH group, which exhibited reduced incidence of ischemic ventricular arrhythmias, Cx43 and p-Cx43(Ser368) were more abundant at "end to end" gap junctions than in N group and this difference was preserved after acute regional ischemia (10 min). We further confirmed higher n-3 PUFA proportion in heart phospholipids after adaptation to IHH, which was even further increased by ischemia. Our results suggest that adaptation to IHH alters expression, phosphorylation and distribution of Cx43 as well as cardioprotective n-3PUFA proportion suggesting that the anti-arrhythmic phenotype elicited by IHH can be at least partly related to the stabilization of the "end to end" conductivity between cardiomyocytes during brief ischemia.

5.
Mol Cell Biochem ; 432(1-2): 99-108, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28290047

RESUMEN

Adaptation to chronic hypoxia represents a potential cardioprotective intervention reducing the extent of acute ischemia/reperfusion (I/R) injury, which is a major cause of death worldwide. The main objective of this study was to investigate the anti-apoptotic Akt/hexokinase 2 (HK2) pathway in hypoxic hearts subjected to I/R insult. Hearts isolated from male Wistar rats exposed either to continuous normobaric hypoxia (CNH; 10% O2) or to room air for 3 weeks were perfused according to Langendorff and subjected to 10 min of no-flow ischemia and 10 min of reperfusion. The hearts were collected either after ischemia or after reperfusion and used for protein analyses and quantitative fluorescence microscopy. The CNH resulted in increased levels of HK1 and HK2 proteins and the total HK activity after ischemia compared to corresponding normoxic group. Similarly, CNH hearts exhibited increased ischemic level of Akt protein phosphorylated on Ser473. The CNH also strengthened the interaction of HK2 with mitochondria and prevented downregulation of mitochondrial creatine kinase after reperfusion. The Bax/Bcl-2 ratio was significantly lower after I/R in CNH hearts than in normoxic ones, suggesting a lower probability of apoptosis. In conclusion, the Akt/HK2 pathway is likely to play a role in the development of a cardioprotective phenotype of CNH by preventing the detachment of HK2 from mitochondria at reperfusion period and decreases the Bax/Bcl-2 ratio during I/R insult, thereby lowering the probability of apoptosis activation in the mitochondrial compartment.


Asunto(s)
Hexoquinasa/metabolismo , Mitocondrias Cardíacas/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocardio/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Masculino , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratas , Ratas Wistar
6.
J Appl Physiol (1985) ; 119(12): 1487-93, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26494452

RESUMEN

Chronic hypoxia increases the myocardial resistance to acute ischemia-reperfusion injury by affecting the mitochondrial redox balance. Hexokinase (HK) bears a high potential to suppress the excessive formation of reactive oxygen species because of its increased association with mitochondria, thereby inhibiting the membrane permeability transition pore opening and preventing cell death. The purpose of this study was to determine the effect of severe intermittent hypobaric hypoxia (7,000 m, 8 h/day, 5 wk) on the function and colocalization of HK isoforms with mitochondria in the left (LV) and right ventricles of rat myocardium. The real-time RT-PCR, Western blot, enzyme coupled assay, and quantitative immunofluorescence techniques were used. Our results showed significantly elevated expression of HK isoforms (HK1 and HK2) in the hypoxic LV. In addition, intermittent hypoxia increased the total HK activity and the association of HK isoforms with mitochondria in both ventricles. These findings suggest that HK may contribute to the cardioprotective phenotype induced by adaptation to severe intermittent hypobaric hypoxia.


Asunto(s)
Adaptación Fisiológica , Hexoquinasa/metabolismo , Hipoxia/enzimología , Hipoxia/fisiopatología , Mitocondrias/enzimología , Presión del Aire , Animales , Peso Corporal , Hematócrito , Isoenzimas/metabolismo , Masculino , Miocardio/enzimología , Tamaño de los Órganos , Ratas , Ratas Wistar
7.
Biochim Biophys Acta ; 1794(2): 270-4, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19049907

RESUMEN

Myofibrillar creatine kinase (CK) buffers the cellular ATP concentration during fluctuating ATP turnover in a muscle. In order to detect structural changes of the CK molecule due to bound substrates, the dynamics of free, ATP-bound, and ATP+creatine-bound CK were examined, using steady-state and time-resolved fluorescence spectroscopy. The intrinsic tryptophan fluorescence of non-labelled CK presented the smaller fluorescence lifetime 2.38 ns and rotation correlation time 27 ns for the CK-ATP (in comparison with the times 2.72 ns and 35 ns for the free CK), and their moderate return to the longer times 2.42 ns and 29 ns for the CK-ATP+creatine complex. Three conformations for the non-labelled CK were indicated also by different quenching of fluorescence by acrylamide. Data were confirmed by anisotropy experiments with CK-(FITC labelled), providing the same substrate dependence of the rotation times (34 ns, 27 ns and returning 30 ns). The results indicate the existence of three conformations arranged according to the "energy minimizing principle" by ligated substrates. In this way the data implicate another essential component of physiological control at the subcellular level in the transition of the nonreactive CK-ATP+creatine complex to the reactive enzyme molecule.


Asunto(s)
Creatina Quinasa/química , Modelos Moleculares , Fibras Musculares Esqueléticas/enzimología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Anisotropía , Creatina Quinasa/metabolismo , Fluoresceína-5-Isotiocianato , Colorantes Fluorescentes , Estructura Terciaria de Proteína , Conejos , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA