Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Res ; 33(9): 1622-1637, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37620118

RESUMEN

Bacterial genomes differ in both gene content and sequence mutations, which underlie extensive phenotypic diversity, including variation in susceptibility to antimicrobials or vaccine-induced immunity. To identify and quantify important variants, all genes within a population must be predicted, functionally annotated, and clustered, representing the "pangenome." Despite the volume of genome data available, gene prediction and annotation are currently conducted in isolation on individual genomes, which is computationally inefficient and frequently inconsistent across genomes. Here, we introduce the open-source software graph-gene-caller (ggCaller). ggCaller combines gene prediction, functional annotation, and clustering into a single workflow using population-wide de Bruijn graphs, removing redundancy in gene annotation and resulting in more accurate gene predictions and orthologue clustering. We applied ggCaller to simulated and real-world bacterial data sets containing hundreds or thousands of genomes, comparing it to current state-of-the-art tools. ggCaller has considerable speed-ups with equivalent or greater accuracy, particularly with data sets containing complex sources of error, such as assembly contamination or fragmentation. ggCaller is also an important extension to bacterial genome-wide association studies, enabling querying of annotated graphs for functional analyses. We highlight this application by functionally annotating DNA sequences with significant associations to tetracycline and macrolide resistance in Streptococcus pneumoniae, identifying key resistance determinants that were missed when using only a single reference genome. ggCaller is a novel bacterial genome analysis tool with applications in bacterial evolution and epidemiology.


Asunto(s)
Antibacterianos , Estudio de Asociación del Genoma Completo , Farmacorresistencia Bacteriana , Macrólidos , Programas Informáticos , Anotación de Secuencia Molecular , Genoma Bacteriano , Análisis por Conglomerados , Algoritmos
2.
Genome Biol ; 23(1): 11, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35067223

RESUMEN

Adaptive sampling is a method of software-controlled enrichment unique to nanopore sequencing platforms. To test its potential for enrichment of rarer species within metagenomic samples, we create a synthetic mock community and construct sequencing libraries with a range of mean read lengths. Enrichment is up to 13.87-fold for the least abundant species in the longest read length library; factoring in reduced yields from rejecting molecules the calculated efficiency raises this to 4.93-fold. Finally, we introduce a mathematical model of enrichment based on molecule length and relative abundance, whose predictions correlate strongly with mock and complex real-world microbial communities.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Metagenómica , Análisis de Secuencia de ADN
3.
mBio ; 11(4)2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636251

RESUMEN

Discovery of genetic variants underlying bacterial phenotypes and the prediction of phenotypes such as antibiotic resistance are fundamental tasks in bacterial genomics. Genome-wide association study (GWAS) methods have been applied to study these relations, but the plastic nature of bacterial genomes and the clonal structure of bacterial populations creates challenges. We introduce an alignment-free method which finds sets of loci associated with bacterial phenotypes, quantifies the total effect of genetics on the phenotype, and allows accurate phenotype prediction, all within a single computationally scalable joint modeling framework. Genetic variants covering the entire pangenome are compactly represented by extended DNA sequence words known as unitigs, and model fitting is achieved using elastic net penalization, an extension of standard multiple regression. Using an extensive set of state-of-the-art bacterial population genomic data sets, we demonstrate that our approach performs accurate phenotype prediction, comparable to popular machine learning methods, while retaining both interpretability and computational efficiency. Compared to those of previous approaches, which test each genotype-phenotype association separately for each variant and apply a significance threshold, the variants selected by our joint modeling approach overlap substantially.IMPORTANCE Being able to identify the genetic variants responsible for specific bacterial phenotypes has been the goal of bacterial genetics since its inception and is fundamental to our current level of understanding of bacteria. This identification has been based primarily on painstaking experimentation, but the availability of large data sets of whole genomes with associated phenotype metadata promises to revolutionize this approach, not least for important clinical phenotypes that are not amenable to laboratory analysis. These models of phenotype-genotype association can in the future be used for rapid prediction of clinically important phenotypes such as antibiotic resistance and virulence by rapid-turnaround or point-of-care tests. However, despite much effort being put into adapting genome-wide association study (GWAS) approaches to cope with bacterium-specific problems, such as strong population structure and horizontal gene exchange, current approaches are not yet optimal. We describe a method that advances methodology for both association and generation of portable prediction models.


Asunto(s)
Bacterias/genética , Estudios de Asociación Genética/métodos , Genómica/métodos , Metagenoma , Simulación por Computador , Variación Genética , Genotipo , Modelos Teóricos , Fenotipo , Análisis de Regresión
4.
Environ Sci Technol ; 53(3): 1639-1649, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30608651

RESUMEN

Aquatic systems are contaminated by many metals but their effects as mixtures on organisms are not well understood. Here, we assessed effects of aluminum with fairly well-known modes of actions and indium, an understudied emerging contaminant from electronics, followed by studying equi-effective mixtures thereof. We report acute and adverse phenotypic effects in Daphnia magna adults and global transcriptomic effects employing RNA sequencing in neonates. The mixture induced more than additive activity in mortality and in physiological effects, including growth and reproduction. Similarly, transcriptomic effects were more than additive, as indicated by a markedly higher number of 463 differentially expressed transcripts in the mixture and by distinct classes of genes assigned to several biological functions, including metabolic processes, suggesting depleted energy reserves, which may be responsible for the observed impaired reproduction and growth. A gene set enrichment analysis (GSEA) of a priori known response pathways for aluminum confirmed activation of distinct molecular pathways by indium. Our study is highlighting more than additive effects at the transcriptional and physiological level and is providing a state-of-the art approach to mixture analysis, which is important for risk assessment of these metals and metal mixtures.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Aluminio , Animales , Humanos , Indio , Recién Nacido , Toxicogenética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...