Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(11): 3214-3219, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38476021

RESUMEN

Certain legumes provide a special pathway for rhizobia to invade the root and develop nitrogen-fixing nodules, a process known as lateral root base (LRB) nodulation. This pathway involves intercellular infection at the junction of the lateral roots with the taproot, leading to nodule formation in the lateral root cortex. Remarkably, this LRB pathway serves as a backbone for various adaptative symbiotic processes. Here, we describe different aspects of LRB nodulation and highlight directions for future research to elucidate the mechanisms of this as yet little known but original pathway that will help in broadening our knowledge on the rhizobium-legume symbiosis.


Asunto(s)
Fabaceae , Nodulación de la Raíz de la Planta , Rhizobium , Simbiosis , Nodulación de la Raíz de la Planta/fisiología , Fabaceae/microbiología , Fabaceae/fisiología , Simbiosis/fisiología , Rhizobium/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Fijación del Nitrógeno/fisiología
2.
Plant Physiol ; 194(3): 1611-1630, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38039119

RESUMEN

Legumes establish symbiotic interactions with nitrogen-fixing rhizobia that are accommodated in root-derived organs known as nodules. Rhizobial recognition triggers a plant symbiotic signaling pathway that activates 2 coordinated processes: infection and nodule organogenesis. How these processes are orchestrated in legume species utilizing intercellular infection and lateral root base nodulation remains elusive. Here, we show that Aeschynomene evenia OROSOMUCOID PROTEIN 1 (AeORM1), a key regulator of sphingolipid biosynthesis, is required for nodule formation. Using A. evenia orm1 mutants, we demonstrate that alterations in AeORM1 function trigger numerous early aborted nodules, defense-like reactions, and shorter lateral roots. Accordingly, AeORM1 is expressed during lateral root initiation and elongation, including at lateral root bases where nodule primordium form in the presence of symbiotic bradyrhizobia. Sphingolipidomics revealed that mutations in AeORM1 lead to sphingolipid overaccumulation in roots relative to the wild type, particularly for very long-chain fatty acid-containing ceramides. Taken together, our findings reveal that AeORM1-regulated sphingolipid homeostasis is essential for rhizobial infection and nodule organogenesis, as well as for lateral root development in A. evenia.


Asunto(s)
Fabaceae , Rhizobium , Orosomucoide , Desarrollo Embrionario , Ceramidas , Homeostasis
3.
ISME J ; 17(9): 1416-1429, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37355742

RESUMEN

The establishment of the rhizobium-legume symbiosis is generally based on plant perception of Nod factors (NFs) synthesized by the bacteria. However, some Bradyrhizobium strains can nodulate certain legume species, such as Aeschynomene spp. or Glycine max, independently of NFs, and via two different processes that are distinguished by the necessity or not of a type III secretion system (T3SS). ErnA is the first known type III effector (T3E) triggering nodulation in Aeschynomene indica. In this study, a collection of 196 sequenced Bradyrhizobium strains was tested on A. indica. Only strains belonging to the photosynthetic supergroup can develop a NF-T3SS-independent symbiosis, while the ability to use a T3SS-dependent process is found in multiple supergroups. Of these, 14 strains lacking ernA were tested by mutagenesis to identify new T3Es triggering nodulation. We discovered a novel T3E, Sup3, a putative SUMO-protease without similarity to ErnA. Its mutation in Bradyrhizobium strains NAS96.2 and WSM1744 abolishes nodulation and its introduction in an ernA mutant of strain ORS3257 restores nodulation. Moreover, ectopic expression of sup3 in A. indica roots led to the formation of spontaneous nodules. We also report three other new T3Es, Ubi1, Ubi2 and Ubi3, which each contribute to the nodulation capacity of strain LMTR13. These T3Es have no homology to known proteins but share with ErnA three motifs necessary for ErnA activity. Together, our results highlight an unsuspected distribution and diversity of T3Es within the Bradyrhizobium genus that may contribute to their symbiotic efficiency by participating in triggering legume nodulation.


Asunto(s)
Bradyrhizobium , Fabaceae , Bradyrhizobium/clasificación , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , Bradyrhizobium/fisiología , Fabaceae/microbiología , Fabaceae/fisiología , Filogenia , Nodulación de la Raíz de la Planta , Simbiosis , Proteínas Bacterianas/genética
4.
Front Plant Sci ; 11: 1313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013954

RESUMEN

Nitrate reductase (NR) is the first enzyme of the nitrogen reduction pathway in plants, leading to the production of ammonia. However, in the nitrogen-fixing symbiosis between legumes and rhizobia, atmospheric nitrogen (N2) is directly reduced to ammonia by the bacterial nitrogenase, which questions the role of NR in symbiosis. Next to that, NR is the best-characterized source of nitric oxide (NO) in plants, and NO is known to be produced during the symbiosis. In the present study, we first surveyed the three NR genes (MtNR1, MtNR2, and MtNR3) present in the Medicago truncatula genome and addressed their expression, activity, and potential involvement in NO production during the symbiosis between M. truncatula and Sinorhizobium meliloti. Our results show that MtNR1 and MtNR2 gene expression and activity are correlated with NO production throughout the symbiotic process and that MtNR1 is particularly involved in NO production in mature nodules. Moreover, NRs are involved together with the mitochondrial electron transfer chain in NO production throughout the symbiotic process and energy regeneration in N2-fixing nodules. Using an in vivo NMR spectrometric approach, we show that, in mature nodules, NRs participate also in the regulation of energy state, cytosolic pH, carbon and nitrogen metabolism under both normoxia and hypoxia. These data point to the importance of NR activity for the N2-fixing symbiosis and provide a first explanation of its role in this process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...