Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 230(3): e753-e757, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38723177

RESUMEN

Maintaining high-affinity antibodies after vaccination may be important for long-lasting immunity to malaria, but data on induction and kinetics of affinity is lacking. In a phase 1 malaria vaccine trial, antibody affinity increased following a second vaccination but declined substantially over 12 months, suggesting poor maintenance of high-affinity antibodies. CLINICAL TRIALS REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12607000552482.

2.
Expert Rev Vaccines ; 20(10): 1257-1272, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34530671

RESUMEN

INTRODUCTION: A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED: In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION: It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Humanos , Malaria/prevención & control , Plasmodium falciparum , Desarrollo de Vacunas
3.
Pediatr Diabetes ; 21(2): 271-279, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31800147

RESUMEN

BACKGROUND: Microbial exposures in utero and early life shape the infant microbiome, which can profoundly impact on health. Compared to the bacterial microbiome, very little is known about the virome. We set out to characterize longitudinal changes in the gut virome of healthy infants born to mothers with or without type 1 diabetes using comprehensive virome capture sequencing. METHODS: Healthy infants were selected from Environmental Determinants of Islet Autoimmunity (ENDIA), a prospective cohort of Australian children with a first-degree relative with type 1 diabetes, followed from pregnancy. Fecal specimens were collected three-monthly in the first year of life. RESULTS: Among 25 infants (44% born to mothers with type 1 diabetes) at least one virus was detected in 65% (65/100) of samples and 96% (24/25) of infants during the first year of life. In total, 26 genera of viruses were identified and >150 viruses were differentially abundant between the gut of infants with a mother with type 1 diabetes vs without. Positivity for any virus was associated with maternal type 1 diabetes and older infant age. Enterovirus was associated with older infant age and maternal smoking. CONCLUSIONS: We demonstrate a distinct gut virome profile in infants of mothers with type 1 diabetes, which may influence health outcomes later in life. Higher prevalence and greater number of viruses observed compared to previous studies suggests significant underrepresentation in existing virome datasets, arising most likely from less sensitive techniques used in data acquisition.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Recién Nacido , Embarazo en Diabéticas , Viroma , Estudios de Casos y Controles , Heces/virología , Femenino , Humanos , Masculino , Embarazo
4.
Open Forum Infect Dis ; 6(2): ofz025, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30815502

RESUMEN

BACKGROUND: The importance of gut bacteria in human physiology, immune regulation, and disease pathogenesis is well established. In contrast, the composition and dynamics of the gut virome are largely unknown; particularly lacking are studies in pregnancy. We used comprehensive virome capture sequencing to characterize the gut virome of pregnant women with and without type 1 diabetes (T1D), longitudinally followed in the Environmental Determinants of Islet Autoimmunity study. METHODS: In total, 61 pregnant women (35 with T1D and 26 without) from Australia were examined. Nucleic acid was extracted from serial fecal specimens obtained at prenatal visits, and viral genomes were sequenced by virome capture enrichment. The frequency, richness, and abundance of viruses were compared between women with and without T1D. RESULTS: Two viruses were more prevalent in pregnant women with T1D: picobirnaviruses (odds ratio [OR], 4.2; 95% confidence interval [CI], 1.0-17.1; P = .046) and tobamoviruses (OR, 3.2; 95% CI, 1.1-9.3; P = .037). The abundance of 77 viruses significantly differed between the 2 maternal groups (≥2-fold difference; P < .02), including 8 Enterovirus B types present at a higher abundance in women with T1D. CONCLUSIONS: These findings provide novel insight into the composition of the gut virome during pregnancy and demonstrate a distinct profile of viruses in women with T1D.

5.
Sci Rep ; 9(1): 1749, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741981

RESUMEN

Enteroviruses (EVs) are prime candidate environmental triggers of islet autoimmunity (IA), with potential as vaccine targets for type 1 diabetes prevention. However, the use of targeted virus detection methods and the selective focus on EVs by most studies increases the risk for substantial investigation bias and an overestimated association between EV and type 1 diabetes. Here we performed comprehensive virome-capture sequencing to examine all known vertebrate-infecting viruses without bias in 182 specimens (faeces and plasma) collected before or at seroconversion from 45 case children with IA and 48 matched controls. From >2.6 billion reads, 28 genera of viruses were detected and 62% of children (58/93) were positive for ≥1 vertebrate-infecting virus. We identified 129 viruses as differentially abundant between the gut of cases and controls, including 5 EV-A types significantly more abundant in the cases. Our findings further support EV's hypothesised contribution to IA and corroborate the proposal that viral load may be an important parameter in disease pathogenesis. Furthermore, our data indicate a previously unrecognised association of IA with higher EV-A abundance in the gut of children and provide a catalog of viruses to be interrogated further to determine a causal link between virus infection and type 1 diabetes.


Asunto(s)
Autoinmunidad , Diabetes Mellitus Tipo 1/etiología , Infecciones por Enterovirus/virología , Enterovirus , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Islotes Pancreáticos/inmunología , Biodiversidad , Estudios de Casos y Controles , Susceptibilidad a Enfermedades , Enterovirus/genética , Enterovirus/inmunología , Infecciones por Enterovirus/epidemiología , Heces/virología , Femenino , Microbioma Gastrointestinal/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Islotes Pancreáticos/patología , Masculino , Prevalencia , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...