RESUMEN
There is abundant evidence that bone mineral content is highly heritable, while the heritability of bone quality (i.e. trabecular bone score [TBS] and quantitative ultrasound index [QUI]) is rarely investigated. We aimed to disentangle the role of genetic, shared and unique environmental factors on TBS and QUI among Hungarian twins. Our study includes 82 twin (48 monozygotic, 33 same-sex dizygotic) pairs from the Hungarian Twin Registry. TBS was determined by DXA, QUI by calcaneal bone ultrasound. To estimate the genetic and environmental effects, we utilized ACE-variance decomposition. For the unadjusted model of TBS, an AE model provided the best fit with > 80% additive genetic heritability. Adjustment for age, sex, BMI and smoking status improved model fit with 48.0% of total variance explained by independent variables. Furthermore, there was a strong dominant genetic effect (73.7%). In contrast, unadjusted and adjusted models for QUI showed an AE structure. Adjustments improved model fit and 25.7% of the total variance was explained by independent variables. Altogether 70-90% of the variance in QUI was related to additive genetic influences. We found a strong genetic heritability of bone quality in unadjusted models. Half of the variance of TBS was explained by age, sex and BMI. Furthermore, the adjusted model suggested that the genetic component of TBS could be dominant or an epistasis could be present. In contrast, independent variables explained only a quarter of the variance of QUI and the additive heritability explained more than half of all the variance.
Asunto(s)
Densidad Ósea , Sistema de Registros , Gemelos Dicigóticos , Humanos , Masculino , Femenino , Hungría , Persona de Mediana Edad , Densidad Ósea/genética , Estudios Transversales , Anciano , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Ultrasonografía , Absorciometría de Fotón , Interacción Gen-Ambiente , Hueso Esponjoso/diagnóstico por imagen , Adulto , Calcáneo/diagnóstico por imagenAsunto(s)
Antineoplásicos Hormonales , Neoplasias de la Mama , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Antineoplásicos Hormonales/efectos adversos , Densidad Ósea/efectos de los fármacos , Fracturas Óseas/etiología , Fracturas Óseas/prevención & control , Fracturas Óseas/epidemiología , Fracturas Óseas/inducido químicamente , Osteoporosis/inducido químicamente , Osteoporosis Posmenopáusica/tratamiento farmacológicoRESUMEN
AIMS: As necroptosis involving receptor-interacting protein kinase 3 (RIP3) and dynamin-related protein 1 (Drp1)-mediated signalling is a crucial mechanism of cell loss in heart failure (HF), we aimed to determine the potential diagnostic use of these molecules. METHODS AND RESULTS: The serum samples of the healthy subjects (n = 8) and patients with HF with reduced ejection fraction (n = 31), being subdivided according to the aetiology and New York Heart Association (NYHA) class, were used to measure RIP3 and Drp1 levels by enzyme-linked immunosorbent assay. Although the serum levels of Drp1 in the patients with HF were comparable with those seen in healthy individuals, we found a trend of increase in the levels of RIP3 (P = 0.0697) in the diseased group. These changes were unlikely dependent on the HF aetiology or NYHA class. The circulating RIP3 correlated with neither the main parameters assessing cardiac function (left ventricular ejection fraction, left ventricular end-diastolic diameter, and N-terminal pro-brain natriuretic peptide) nor the marker of inflammation (C-reactive protein). CONCLUSIONS: In this pilot study, findings on serum RIP3 supported the importance of necroptosis in HF pathomechanisms. The potential diagnostic use of circulating RIP3, unlike Drp1, as an additional biomarker of HF has also been indicated; however, further large studies are needed to prove this concept.
Asunto(s)
Biomarcadores , Dinaminas , Insuficiencia Cardíaca , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Humanos , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Masculino , Proteína Serina-Treonina Quinasas de Interacción con Receptores/sangre , Femenino , Dinaminas/sangre , Biomarcadores/sangre , Persona de Mediana Edad , Anciano , Volumen Sistólico/fisiología , Proyectos Piloto , Ensayo de Inmunoadsorción Enzimática , Función Ventricular Izquierda/fisiologíaRESUMEN
Slow waves (SWs) represent the most prominent electrophysiological events in the thalamocortical system under anesthesia and during deep sleep. Recent studies have revealed that SWs have complex spatiotemporal dynamics and propagate across neocortical regions. However, it is still unclear whether neuronal activity in the thalamus exhibits similar propagation properties during SWs. Here, we report propagating population activity in the thalamus of ketamine/xylazine-anesthetized rats and mice visualized by high-density silicon probe recordings. In both rodent species, propagation of spontaneous thalamic activity during up-states was most frequently observed in dorsal thalamic nuclei such as the higher order posterior (Po), lateral posterior (LP) or laterodorsal (LD) nuclei. The preferred direction of thalamic activity spreading was along the dorsoventral axis, with over half of the up-states exhibiting a gradual propagation in the ventral-to-dorsal direction. Furthermore, simultaneous neocortical and thalamic recordings collected under anesthesia demonstrated that there is a weak but noticeable interrelation between propagation patterns observed during cortical up-states and those displayed by thalamic population activity. In addition, using chronically implanted silicon probes, we detected propagating activity patterns in the thalamus of naturally sleeping rats during slow-wave sleep. However, in comparison to propagating up-states observed under anesthesia, these propagating patterns were characterized by a reduced rate of occurrence and a faster propagation speed. Our findings suggest that the propagation of spontaneous population activity is an intrinsic property of the thalamocortical network during synchronized brain states such as deep sleep or anesthesia. Additionally, our data implies that the neocortex may have partial control over the formation of propagation patterns within the dorsal thalamus under anesthesia.
Asunto(s)
Corteza Cerebral , Roedores , Ratas , Ratones , Animales , Corteza Cerebral/fisiología , Silicio , Tálamo/fisiología , Neuronas/fisiología , Sueño/fisiología , ElectroencefalografíaRESUMEN
High-density microelectrode arrays (MEAs) have opened new possibilities for systems neuroscience in human and non-human animals, but brain tissue motion relative to the array poses a challenge for downstream analyses, particularly in human recordings. We introduce DREDge (Decentralized Registration of Electrophysiology Data), a robust algorithm which is well suited for the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to estimating motion from spikes in the action potential (AP) frequency band, DREDge enables automated tracking of motion at high temporal resolution in the local field potential (LFP) frequency band. In human intraoperative recordings, which often feature fast (period <1s) motion, DREDge correction in the LFP band enabled reliable recovery of evoked potentials, and significantly reduced single-unit spike shape variability and spike sorting error. Applying DREDge to recordings made during deep probe insertions in nonhuman primates demonstrated the possibility of tracking probe motion of centimeters across several brain regions while simultaneously mapping single unit electrophysiological features. DREDge reliably delivered improved motion correction in acute mouse recordings, especially in those made with an recent ultra-high density probe. We also implemented a procedure for applying DREDge to recordings made across tens of days in chronic implantations in mice, reliably yielding stable motion tracking despite changes in neural activity across experimental sessions. Together, these advances enable automated, scalable registration of electrophysiological data across multiple species, probe types, and drift cases, providing a stable foundation for downstream scientific analyses of these rich datasets.
RESUMEN
Necroptosis, a cell death modality that is defined as a necrosis-like cell death depending on the receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL), has been found to underlie the injury of various organs. Nevertheless, the molecular background of this cell loss seems to also involve, at least under certain circumstances, some novel axes, such as RIPK3-PGAM5-Drp1 (mitochondrial protein phosphatase 5-dynamin-related protein 1), RIPK3-CaMKII (Ca2+/calmodulin-dependent protein kinase II) and RIPK3-JNK-BNIP3 (c-Jun N-terminal kinase-BCL2 Interacting Protein 3). In addition, endoplasmic reticulum stress and oxidative stress via the higher production of reactive oxygen species produced by the mitochondrial enzymes and the enzymes of the plasma membrane have been implicated in necroptosis, thereby depicting an inter-organelle interplay in the mechanisms of this cell death. However, the role and relationship between these novel non-conventional signalling and the well-accepted canonical pathway in terms of tissue- and/or disease-specific prioritisation is completely unknown. In this review, we provide current knowledge on some necroptotic pathways being not directly associated with RIPK3-MLKL execution and report studies showing the role of respective microRNAs in the regulation of necroptotic injury in the heart and in some other tissues having a high expression of the pro-necroptotic proteins.
Asunto(s)
Necroptosis , Proteínas Quinasas , Humanos , Necroptosis/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Necrosis , Muerte Celular/genética , Orgánulos/metabolismoRESUMEN
Intermittent hypoxic preconditioning (IHP) is a well-established cardioprotective intervention in models of ischemia/reperfusion injury. Nevertheless, the significance of IHP in different cardiac pathologies remains elusive. In order to investigate the role of IHP and its effects on calcium-dependent signalization in HF, we employed a model of cardiomyopathy induced by doxorubicin (Dox), a widely used drug from the class of cardiotoxic antineoplastics, which was i.p. injected to Wistar rats (4 applications of 4 mg/kg/week). IHP-treated group was exposed to IHP for 2 weeks prior to Dox administration. IHP ameliorated Dox-induced reduction in cardiac output. Western blot analysis revealed increased expression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) while the expression of hypoxia inducible factor (HIF)-1-α, which is a crucial regulator of hypoxia-inducible genes, was not changed. Animals administered with Dox had further decreased expression of TRPV1 and TRPV4 (transient receptor potential, vanilloid subtype) ion channels along with suppressed Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. In summary, IHP-mediated improvement in cardiac output in the model of Dox-induced cardiomyopathy is likely a result of increased SERCA2a expression which could implicate IHP as a potential protective intervention in Dox cardiomyopathy, however, further analysis of observed effects is still required.
Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Ratas , Animales , Ratas Wistar , Apoptosis , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Cardiomiopatías/metabolismo , Doxorrubicina/toxicidad , Hipoxia/inducido químicamenteRESUMEN
High temporal resolution concentration measurements in rapid gas flows pose a serious challenge for most analytical instruments. The interaction of such flows with solid surfaces can generate excessive aero-acoustic noise making the application of the photoacoustic detection method seemingly impossible. Yet, the fully open photoacoustic cell (OC) has proven to be operable even when the measured gas flows through it at a velocity of several m/s. The OC is a slightly modified version of a previously introduced OC based on the excitation of a combined acoustic mode of a cylindrical resonator. The noise characteristics and analytical performance of the OC are tested in an anechoic room and under field conditions. Here we present the first successful application of a sampling-free OC for water vapor flux measurements.
RESUMEN
Adaptation strategies to ameliorate the impacts of climate change are increasing in scale and scope around the world, with interventions becoming a part of daily life for many people. Though the implications of climate impacts for health and wellbeing are well documented, to date, adaptations are largely evaluated by financial cost and their effectiveness in reducing risk. Looking across different forms of adaptation to floods, we use existing literature to develop a typology of key domains of impact arising from interventions that are likely to shape health and wellbeing. We suggest that this typology can be used to assess the health consequences of adaptation interventions more generally and argue that such forms of evaluation will better support the development of sustainable adaptation planning.
Asunto(s)
Cambio Climático , Inundaciones , HumanosRESUMEN
Introduction: Quercetin (Que) is a potent anti-inflammatory and antioxidant flavonoid with cardioprotective potential. However, very little is known about the signaling pathways and gene regulatory proteins Que may interfere with, especially in diabetic cardiomyopathy. Therefore, we aimed to study the potential cardioprotective effects of Que on the cardiac phenotype of type 2 diabetes mellitus (T2DM) accompanied by obesity. Methods: For this experiment, we used Zucker Diabetic Fatty rats (fa/fa) and their age-matched lean controls (fa/+) that were treated with either vehicle or 20 mg/kg/day of Que for 6 weeks. Animals underwent echocardiographic (echo) examination before the first administration of Que and after 6 weeks. Results: After the initial echo examination, the diabetic rats showed increased E/A ratio, a marker of left ventricular (LV) diastolic dysfunction, in comparison to the control group which was selectively reversed by Que. Following the echo analysis, Que reduced LV wall thickness and exhibited an opposite effect on LV luminal area. In support of these results, the total collagen content measured by hydroxyproline assay was decreased in the LVs of diabetic rats treated with Que. The follow-up immunoblot analysis of proteins conveying cardiac remodeling pathways revealed that Que was able to interfere with cardiac pro-hypertrophic signaling. In fact, Que reduced relative protein expression of pro-hypertrophic transcriptional factor MEF2 and its counter-regulator HDAC4 along with pSer246-HDAC4. Furthermore, Que showed potency to decrease GATA4 transcription factor, NFAT3 and calcineurin, as well as upstream extracellular signal-regulated kinase Erk5 which orchestrates several pro-hypertrophic pathways. Discussion: In summary, we showed for the first time that Que ameliorated pro-hypertrophic signaling on the level of epigenetic regulation and targeted specific upstream pathways which provoked inhibition of pro-hypertrophic signals in ZDF rats. Moreover, Que mitigated T2DM and obesity-induced diastolic dysfunction, therefore, might represent an interesting target for future research on novel cardioprotective agents.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Disfunción Ventricular Izquierda , Ratas , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Epigénesis Genética , Ratas Zucker , Cardiomegalia/genética , Disfunción Ventricular Izquierda/complicaciones , Obesidad/complicacionesRESUMEN
Background and Objectives: Osteoporosis is a major risk of fractures, harming patients' quality of life. Dual-energy X-ray absorptiometry (DXA), which can detect osteoporosis early, is too expensive to be conducted on a regular basis. Therefore, we aimed to evaluate a screening method using chest radiographs developed in Japan applied to another population. Materials and Methods: Fifty-five patients who had a chest radiograph and DXA and applied within three months of each test were recruited from the patient database of Semmelweis University (Budapest, Hungary). Graphical analysis of the chest radiographs was conducted to identify the ratio of the cortical bone in the clavicle of each patient. Two researchers performed the analysis, and multiple regression was conducted to determine the bone mineral density of each patient provided by DXA. Results: The Pearson correlation between two examiners' determinations of the cortical bone ratio was 0.769 (p < 0.001). The multiple regression model proved to be statistically significant in identifying osteoporosis, but the model adopted for the Hungarian population was different compared to the Japanese population. Conclusions: This simple, economic Japanese graphical analysis method for chest radiographs may be feasible in detecting osteoporosis. Further studies with a larger population of patients with greater variety of ethnicity would be of value in improving the accuracy of this model.
Asunto(s)
Osteoporosis , Calidad de Vida , Humanos , Osteoporosis/diagnóstico por imagen , Radiografía , Densidad Ósea , Absorciometría de Fotón/métodosRESUMEN
Despite currently available therapies, cardiovascular diseases (CVD) are among the leading causes of death globally. Biological sex is a critical determinant of the occurrence, progression and overall outcome of CVD. However, the underlying mechanisms are incompletely understood. A hallmark of CVD is cell death. Based on the inability of the human heart to regenerate, loss of functional cardiac tissue can lead to irreversible detrimental effects. Here, we summarize current knowledge on how biological sex affects cell death-related mechanisms in CVD. Initially, we discuss apoptosis and necrosis, but we specifically focus on the relatively newly recognized programmed necrosis-like processes: pyroptosis and necroptosis. We also discuss the role of 17ß-estradiol (E2) in these processes, particularly in terms of inhibiting pyroptotic and necroptotic signaling. We put forward that a better understanding of the effects of biological sex and E2 might lead to the identification of novel targets with therapeutic potential.
Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/terapia , Necrosis , Muerte Celular , Apoptosis , PiroptosisRESUMEN
In this study, a role of cell loss due to necroptosis and its linkage with pyroptosis in organ damage under the conditions of pulmonary arterial hypertension (PAH) was examined. Monocrotaline (MCT) was used to induce PAH in Wistar rats, and depending on the severity of the disease progression, they were further divided into two subgroups: MCT group-sacrificed 4 weeks after MCT administration and ptMCT group-prematurely sacrificed due to rapid deterioration in vital functions (on Day 24,11 ± 0,7). The elevation of respiratory rate and right ventricular (RV) hypertrophy were more evident in ptMCT group, while the heart rate and cardiac haemodynamic stress markers were comparably higher in both diseased groups. Detailed immunoblotting analysis revealed that the upregulation of pThr231 /Ser232 -RIP3 proceeded into necroptosis execution in the RVs, unlike in the lungs of both PAH stages. The elevated pulmonary pThr231 /Ser232 -RIP3 levels in both PAH subgroups were associated rather with GSDMD-mediated pyroptosis. On the contrary, other inflammasome forms, such as AIM2 and NLRC4, were higher in the RV, unlike in the lungs, of diseased groups. The PAH-induced increase in the plasma RIP3 levels was more pronounced in ptMCT group, and positively correlated with RV hypertrophy, but not with haemodynamic stress. Taken together, we indicated for the first time that pThr231 /Ser232 -RIP3 upregulation resulting in two different necrosis-like cell death modes might underlie the pathomechanisms of PAH and that the plasma RIP3 might serve as an additional diagnostic and prognostic marker of cardiac injury under these conditions.
Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar , Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Monocrotalina/toxicidad , Necroptosis , Piroptosis , Ratas , Ratas WistarRESUMEN
Extensive research work has been carried out to define the exact significance and contribution of regulated necrosis-like cell death program, such as necroptosis to cardiac ischemic injury. This cell damaging process plays a critical role in the pathomechanisms of myocardial infarction (MI) and post-infarction heart failure (HF). Accordingly, it has been documented that the modulation of key molecules of the canonical signaling pathway of necroptosis, involving receptor-interacting protein kinases (RIP1 and RIP3) as well as mixed lineage kinase domain-like pseudokinase (MLKL), elicit cardioprotective effects. This is evidenced by the reduction of the MI-induced infarct size, alleviation of myocardial dysfunction, and adverse cardiac remodeling. In addition to this molecular signaling of necroptosis, the non-canonical pathway, involving Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of mitochondrial permeability transition pore (mPTP) opening, and phosphoglycerate mutase 5 (PGAM5)-dynamin-related protein 1 (Drp-1)-induced mitochondrial fission, has recently been linked to ischemic heart injury. Since MI and HF are characterized by an imbalance between reactive oxygen species production and degradation as well as the occurrence of necroptosis in the heart, it is likely that oxidative stress (OS) may be involved in the mechanisms of this cell death program for inducing cardiac damage. In this review, therefore, several observations from different studies are presented to support this paradigm linking cardiac OS, the canonical and non-canonical pathways of necroptosis, and ischemia-induced injury. It is concluded that a multiple therapeutic approach targeting some specific changes in OS and necroptosis may be beneficial in improving the treatment of ischemic heart disease.
RESUMEN
Background: The role of cardiac autophagy during ischemia and reperfusion (I/R) remains controversial. Furthermore, whether this cell death during I/R is also interconnected with other cell damaging event, such as necroptosis, is insufficiently known. Thus, the aim of this study was to investigate possible links between autophagy and necroptosis in the hearts under conditions of acute I/R injury. Methods: Langendorff-perfused male Wistar rat hearts were subjected to 30-min global ischemia followed by 10-min reperfusion in the presence of either vehicle or a drug inhibiting the pro-necroptotic receptor-interacting protein kinase 3 (RIP3). Hemodynamic parameters and lactate dehydrogenase (LDH) release were measured to assess heart function and non-specific cell death due to the disruption of plasma membrane. Results: Immunoblot analysis of left ventricles revealed that early reperfusion suppressed the activation of autophagy as evidenced by the decreased protein expression of Beclin-1, pSer555-ULK1, pSer555-ULK1/ULK1 ratio, and LC3-II/LC3-I ratio. On the other hand, the molecular signalling responsible for autophagy inhibition did not appear to be affected in these I/R settings. RIP3 inhibition during reperfusion significantly mitigated the loss of the plasma membrane integrity but did not improve cardiac function. This pharmacological intervention targeting necroptosis-mediating protein decreased LC3-II expression in I/R hearts, suggesting some effect on autophagosome processing, but it did not significantly alter other signalling pathways involved in autophagy activation or inhibition. Conclusions: In summary, we showed for the first time that an early reperfusion phase does not promote autophagy and that there may be an interplay between pro-necroptotic protein RIP3 and autophagy with respect to the regulation of autophagosome processing.
RESUMEN
Összefoglaló. A gyermekek közel fele szenved el csonttörést. Ez lehet traumás esemény vagy a csontfejlodést megzavaró genetikus, hormonális vagy egyéb eltérés a csontváz bármely részén. A leggyakoribb azonban az enyhe trauma kapcsán jelentkezo csuklótáji törés, amely többnyire a pubertas alatt fordul elo. A jelenség alapja, hogy a serdülés során átmenetileg elválik egymástól a csontok méretének gyors növekedése és a csonttömeg gyarapodása, ami a longitudinális növekedést kb. egy év késéssel követi. Az így kialakuló átmeneti csontgyengeség a gyermekkori csonttörés fo oka, aminek a hatásához az említett genetikai, hormonális és életmódi rendellenességek is csatlakozhatnak. A gyermekkorban elofordult kistraumás csonttörés a felnott férfiaknál az osteoporosisos csonttörések fokozott rizikójával jár, ezért szurovizsgálati kérdésként is szolgál. Nok esetében ugyanez az összefüggés még bizonyításra vár. Orv Hetil. 2021; 162(42): 1687-1692. Summary. Bone fracture occurs nearly in half of the children. Some fractures are severe traumatic events while others are the results of genetic or hormonal or other alterations disturbing the normal development of bone. However, the majority of fractures are associated with a mild trauma, dominantly in the pubertal period. The basic pathology of the pubertal fractures is the transient deviation of peak velocity of height growth from the gain velocity of bone mass; the latter goes to peak 1 year later than height growth. This difference has been resulted in a physiologic but transient weakening of bones that can coincide with genetic, hormonal or life-style problems and all of these factors together may cause the increased fragility of the pubertal bone. Low-trauma fractures in childhood may be followed in high fracture risk of adult and aging men, so the childhood fracture seems to be a useful screening question for testing the osteoporosis in males. However, the same relation is still not proved in aging women. Orv Hetil. 2021; 162(42): 1687-1692.
Asunto(s)
Fracturas Óseas , Osteoporosis , Adulto , Anciano , Envejecimiento , Densidad Ósea , Niño , Femenino , Fracturas Óseas/epidemiología , Fracturas Óseas/etiología , Humanos , Masculino , Osteoporosis/epidemiologíaRESUMEN
INTRODUCTION: Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are associated with osteoporosis. There have not been many peripheral quantitative computed tomography (QCT) studies in patients receiving biologics. We assessed volumetric and areal bone mineral density (BMD) by forearm QCT and dual-energy X-ray absorptiometry (DXA), respectively in addition to laboratory biomarkers in these arthritides. METHODS: Forty RA and AS patients treated with either etanercept (ETN) or certolizumab pegol (CZP) were undergoing follow-ups for one year. Volumetric and areal BMD, as well as parathyroid hormone (PTH), osteocalcin, RANKL, 25-hydroxyvitamin D (VITD), P1NP, CTX, sclerostin (SOST), Dickkopf 1 (DKK-1) and cathepsin K (CATHK) were determined. RESULTS: We did not observe any further bone loss during the 12-month treatment period. Volumetric and areal BMD showed significant correlations with each other (p<0.017 after Bonferroni's correction). Trabecular QCT BMD at baseline (p=0.015) and cortical QCT BMD after 12 months (p=0.005) were inversely determined by disease activity at baseline in the full cohort. Trabecular QCT BMD at baseline also correlated with CTX (p=0.011). In RA, CRP negatively (p=0.014), while SOST positively (p=0.013) correlated with different QCT parameters. In AS, RANKL at baseline (p=0.014) and after 12 months (p=0.007) correlated with cortical QCT BMD. In the full cohort, 12-month change in QTRABBMD was related to TNF inhibition together with elevated VITD-0 levels (p=0.031). Treatment and lower CATHK correlated with QCORTBMD changes (p=0.006). In RA, TNF inhibition together with VITD-0 (p<0.01) or CATHK-0 (p=0.002), while in AS, treatment and RANKL-0 (p<0.05) determined one-year changes in QCT BMD. CONCLUSIONS: BMD as determined by QCT did not change over one year of anti-TNF treatment. Disease activity, CATHK, RANKL and VITD may be associated with the effects of anti-TNF treatment on QCT BMD changes. RA and AS may differ in this respect.
Asunto(s)
Artritis Reumatoide , Espondilitis Anquilosante , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/tratamiento farmacológico , Densidad Ósea , Humanos , Espondilitis Anquilosante/diagnóstico por imagen , Espondilitis Anquilosante/tratamiento farmacológico , Tomografía Computarizada por Rayos X , Inhibidores del Factor de Necrosis TumoralRESUMEN
Receptor-interacting protein kinase 3 (RIP3) is a convergence point of multiple signalling pathways, including necroptosis, inflammation and oxidative stress; however, it is completely unknown whether it underlies acute myocardial ischemia/reperfusion (I/R) injury. Langendorff-perfused rat hearts subjected to 30 min ischemia followed by 10 min reperfusion exhibited compromised cardiac function which was not abrogated by pharmacological intervention of RIP3 inhibition. An immunoblotting analysis revealed that the detrimental effects of I/R were unlikely mediated by necroptotic cell death, since neither the canonical RIP3-MLKL pathway (mixed lineage kinase-like pseudokinase) nor the proposed non-canonical molecular axes involving CaMKIIδ-mPTP (calcium/calmodulin-dependent protein kinase IIδ-mitochondrial permeability transition pore), PGAM5-Drp1 (phosphoglycerate mutase 5-dynamin-related protein 1) and JNK-BNIP3 (c-Jun N-terminal kinase-BCL2-interacting protein 3) were activated. Similarly, we found no evidence of the involvement of NLRP3 inflammasome signalling (NOD-, LRR- and pyrin domain-containing protein 3) in such injury. RIP3 inhibition prevented the plasma membrane rupture and delayed mPTP opening which was associated with the modulation of xanthin oxidase (XO) and manganese superoxide dismutase (MnSOD). Taken together, this is the first study indicating that RIP3 regulates early reperfusion injury via oxidative stress- and mitochondrial activity-related effects, rather than cell loss due to necroptosis.
Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Masculino , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas WistarRESUMEN
Publicly available neural recordings obtained with high spatial resolution are scarce. Here, we present an electrophysiological dataset recorded from the neocortex of twenty rats anesthetized with ketamine/xylazine. The wideband, spontaneous recordings were acquired with a single-shank silicon-based probe having 128 densely-packed recording sites arranged in a 32 × 4 array. The dataset contains the activity of a total of 7126 sorted single units extracted from all layers of the cortex. Here, we share raw neural recordings, as well as spike times, extracellular spike waveforms and several properties of units packaged in a standardized electrophysiological data format. For technical validation of our dataset, we provide the distributions of derived single unit properties along with various spike sorting quality metrics. This large collection of in vivo data enables the investigation of the high-resolution electrical footprint of cortical neurons which in turn may aid their electrophysiology-based classification. Furthermore, the dataset might be used to study the laminar-specific neuronal activity during slow oscillation, a brain rhythm strongly involved in neural mechanisms underlying memory consolidation and sleep.
Asunto(s)
Ondas Encefálicas , Consolidación de la Memoria , Neocórtex/fisiología , Neuronas/fisiología , Sueño , Analgésicos/farmacología , Anestesia , Animales , Femenino , Ketamina/farmacología , Neocórtex/citología , Neocórtex/efectos de los fármacos , Ratas , Ratas Wistar , Xilazina/farmacologíaRESUMEN
Background and Objectives: Previous studies have demonstrated that risk of hip fracture is at least partly heritable. The aim of this study was to determine the magnitude of the genetic component of bone mineral density (BMD), using both X-ray and ultrasound assessment at multiple sites. Materials and Methods: 216 adult, healthy Hungarian twins (124 monozygotic, MZ, 92 dizygotic, DZ; mean age 54.2 ± 14.3 years), recruited from the Hungarian Twin Registry with no history of oncologic disease underwent cross-sectional BMD studies. We measured BMD, T- and Z-scores with dual energy X-ray absorptiometry (DEXA) at multiple sites (lumbar spine, femoral neck, total hip and radius). Quantitative bone ultrasound (QUS) was also performed, resulting in a calculated value of estimated bone mineral density (eBMD) in the heel bone. Heritability was calculated using the univariate ACE model. Results: Bone density had a strong genetic component at all sites with estimates of heritability ranging from 0.613 to 0.838 in the total sample. Lumbar BMD and calcaneus eBMD had major genetic components with estimates of 0.828 and 0.838 respectively, and least heritable (0.653) at the total hip. BMD of the radius had also a strong genetic component with an estimate of 0.806. No common environmental effect was found. The remaining variance was influenced by unique environment (0.162 to 0.387). In females only, slightly higher additive genetic estimates were found, especially in the case of the femoral neck and total hip. Conclusion: Bone mineral density is strongly heritable, especially in females at all locations using both DEXA and QUS, which may explain the importance of family history as a risk factor for bone fractures. Unshared environmental effects account for the rest of the variance with slight differences in magnitude across various bone regions, supporting the role of lifestyle in preventing osteoporotic fractures with various efficacy in different bone regions.