Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(38): 34632-34646, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36188303

RESUMEN

Increased FOXO3 nuclear localization is involved in neuroblastoma chemoresistance and tumor angiogenesis. Accordingly, FOXO3 inhibition is a promising strategy for boosting antitumor immune responses and suppressing FOXO3-mediated therapy resistance in cancer cells. However, no FOXO3 inhibitors are currently available for clinical use. Nevertheless, we have recently identified (4-propoxy)phenylpyrimidinylguanidine as a FOXO3 inhibitor in cancer cells in the low micromolar range. Here, we report the synthesis and structure-activity relationship study of a small library of its derivatives, some of which inhibit FOXO3-induced gene transcription in cancer cells in a submicromolar range and are thus 1 order of magnitude more potent than their parent compound. By NMR and molecular docking, we showed that these compounds differ in their interactions with the DNA-binding domain of FOXO3. These results may provide a foundation for further optimizing (4-propoxy)phenylpyrimidinylguanidine and developing therapeutics for inhibiting the activity of forkhead box (FOX) transcription factors and their interactions with other binding partners.

2.
Protein Sci ; 31(5): e4287, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481640

RESUMEN

Transcription factor p53 protects cells against tumorigenesis when subjected to various cellular stresses. Under these conditions, p53 interacts with transcription factor Forkhead box O (FOXO) 4, thereby inducing cellular senescence by upregulating the transcription of senescence-associated protein p21. However, the structural details of this interaction remain unclear. Here, we characterize the interaction between p53 and FOXO4 by NMR, chemical cross-linking, and analytical ultracentrifugation. Our results reveal that the interaction between p53 TAD and the FOXO4 Forkhead domain is essential for the overall stability of the p53:FOXO4 complex. Furthermore, contacts involving the N-terminal segment of FOXO4, the C-terminal negative regulatory domain of p53 and the DNA-binding domains of both proteins stabilize the complex, whose formation blocks p53 binding to DNA but without affecting the DNA-binding properties of FOXO4. Therefore, our structural findings may help to understand the intertwined functions of p53 and FOXO4 in cellular homeostasis, longevity, and stress response.


Asunto(s)
Factores de Transcripción Forkhead , Proteína p53 Supresora de Tumor , Proteínas de Ciclo Celular/metabolismo , ADN/química , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Unión Proteica , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Commun Biol ; 4(1): 986, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413451

RESUMEN

Death-associated protein kinase 2 (DAPK2) is a CaM-regulated Ser/Thr protein kinase, involved in apoptosis, autophagy, granulocyte differentiation and motility regulation, whose activity is controlled by autoinhibition, autophosphorylation, dimerization and interaction with scaffolding proteins 14-3-3. However, the structural basis of 14-3-3-mediated DAPK2 regulation remains unclear. Here, we structurally and biochemically characterize the full-length human DAPK2:14-3-3 complex by combining several biophysical techniques. The results from our X-ray crystallographic analysis revealed that Thr369 phosphorylation at the DAPK2 C terminus creates a high-affinity canonical mode III 14-3-3-binding motif, further enhanced by the diterpene glycoside Fusicoccin A. Moreover, concentration-dependent DAPK2 dimerization is disrupted by Ca2+/CaM binding and stabilized by 14-3-3 binding in solution, thereby protecting the DAPK2 inhibitory autophosphorylation site Ser318 against dephosphorylation and preventing Ca2+/CaM binding. Overall, our findings provide mechanistic insights into 14-3-3-mediated DAPK2 inhibition and highlight the potential of the DAPK2:14-3-3 complex as a target for anti-inflammatory therapies.


Asunto(s)
Proteínas 14-3-3/genética , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Dimerización , Regulación de la Expresión Génica , Humanos , Fosforilación
4.
FEBS J ; 287(16): 3494-3510, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31961068

RESUMEN

Among all species, caspase-2 (C2) is the most evolutionarily conserved caspase required for effective initiation of apoptosis following death stimuli. C2 is activated through dimerization and autoproteolytic cleavage and inhibited through phosphorylation at Ser139 and Ser164 , within the linker between the caspase recruitment and p19 domains of the zymogen, followed by association with the adaptor protein 14-3-3, which maintains C2 in its immature form procaspase (proC2). However, the mechanism of 14-3-3-dependent inhibition of C2 activation remains unclear. Here, we report the structural characterization of the complex between proC2 and 14-3-3 by hydrogen/deuterium mass spectrometry and protein crystallography to determine the molecular basis for 14-3-3-mediated inhibition of C2 activation. Our data reveal that the 14-3-3 dimer interacts with proC2 not only through ligand-binding grooves but also through other regions outside the central channel, thus explaining the isoform-dependent specificity of 14-3-3 protein binding to proC2 and the substantially higher binding affinity of 14-3-3 protein to proC2 than to the doubly phosphorylated peptide. The formation of the complex between 14-3-3 protein and proC2 does not induce any large conformational change in proC2. Furthermore, 14-3-3 protein interacts with and masks both the nuclear localization sequence and the C-terminal region of the p12 domain of proC2 through transient interactions in which both the p19 and p12 domains of proC2 are not firmly docked onto the surface of 14-3-3. This masked region of p12 domain is involved in C2 dimerization. Therefore, 14-3-3 protein likely inhibits proC2 activation by blocking its dimerization surface. DATABASES: Structural data are available in the Protein Data Bank under the accession numbers 6SAD and 6S9K.


Asunto(s)
Proteínas 14-3-3/química , Caspasa 2/química , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Precursores de Proteínas/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sitios de Unión/genética , Caspasa 2/genética , Caspasa 2/metabolismo , Cristalografía por Rayos X , Humanos , Mutación , Fosforilación , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Biochem J ; 473(22): 4129-4143, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27623778

RESUMEN

The silent information regulator 1 (Sirt1) has been shown to have negative effects on the Notch pathway in several contexts. We bring evidence that Sirt1 has a positive effect on Notch activation in Drosophila, in the context of sensory organ precursor specification and during wing development. The phenotype of Sirt1 mutant resembles weak Notch loss-of-function phenotypes, and genetic interactions of Sirt1 with the components of the Notch pathway also suggest a positive role for Sirt1 in Notch signalling. Sirt1 is necessary for the efficient activation of enhancer of split [E(spl)] genes by Notch in S2N cells. Additionally, the Notch-dependent response of several E(spl) genes is sensitive to metabolic stress caused by 2-deoxy-d-glucose treatment, in a Sirt1-dependent manner. We found Sirt1 associated with several proteins involved in Notch repression as well as activation, including the cofactor exchange factor Ebi (TBL1), the RLAF/LAF histone chaperone complex and the Tip60 acetylation complex. Moreover, Sirt1 participates in the deacetylation of the CSL transcription factor Suppressor of Hairless. The role of Sirt1 in Notch signalling is, therefore, more complex than previously recognized, and its diverse effects may be explained by a plethora of Sirt1 substrates involved in the regulation of Notch signalling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Sirtuina 1/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Desoxiglucosa/farmacología , Drosophila , Proteínas de Drosophila/genética , Inmunoprecipitación , Espectrometría de Masas , Unión Proteica , Interferencia de ARN/fisiología , ARN Mensajero/antagonistas & inhibidores , Receptores Notch/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA