Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res Health ; 2(3): 035007, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38962451

RESUMEN

Air pollution exposure is associated with adverse respiratory health outcomes. Evidence from occupational and community-based studies also suggests agricultural pesticides have negative health impacts on respiratory health. Although populations are exposed to multiple inhalation hazards simultaneously, multidomain mixtures (e.g. environmental and chemical pollutants of different classes) are rarely studied. We investigated the association of ambient air pollution-pesticide exposure mixtures with urinary leukotriene E4 (LTE4), a respiratory inflammation biomarker, for 75 participants in four Central California communities over two seasons. Exposures included three criteria air pollutants estimated via the Community Multiscale Air Quality model (fine particulate matter, ozone, and nitrogen dioxide) and urinary metabolites of organophosphate (OP) pesticides (total dialkyl phosphates (DAPs), total diethyl phosphates (DE), and total dimethyl phosphates (DM)). We implemented multiple linear regression models to examine associations in single pollutant models adjusted for age, sex, asthma status, occupational status, household member occupational status, temperature, and relative humidity, and evaluated whether associations changed seasonally. We then implemented Bayesian kernel machine regression (BKMR) to analyse these criteria air pollutants, DE, and DM as a mixture. Our multiple linear regression models indicated an interquartile range (IQR) increase in total DAPs was associated with an increase in urinary LTE4 in winter (ß: 0.04, 95% CI: [0.01, 0.07]). Similarly, an IQR increase in total DM was associated with an increase in urinary LTE4 in winter (ß:0.03, 95% CI: [0.004, 0.06]). Confidence intervals for all criteria air pollutant effect estimates included the null value. BKMR analysis revealed potential non-linear interactions between exposures in our air pollution-pesticide mixture, but all confidence intervals contained the null value. Our analysis demonstrated a positive association between OP pesticide metabolites and urinary LTE4 in a low asthma prevalence population and adds to the limited research on the joint effects of ambient air pollution and pesticides mixtures on respiratory health.

2.
Environ Res ; 225: 115591, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36878268

RESUMEN

BACKGROUND: In 2020, the American West faced two competing challenges: the COVID-19 pandemic and the worst wildfire season on record. Several studies have investigated the impact of wildfire smoke (WFS) on COVID-19 morbidity and mortality, but little is known about how these two public health challenges impact mortality risk for other causes. OBJECTIVES: Using a time-series design, we evaluated how daily risk of mortality due to WFS exposure differed for periods before and during the COVID-19 pandemic. METHODS: Our study included daily data for 11 counties in the Front Range region of Colorado (2010-2020). We assessed WFS exposure using data from the National Oceanic and Atmospheric Administration and used mortality counts from the Colorado Department of Public Health and Environment. We estimated the interaction between WFS and the pandemic (an indicator variable) on mortality risk using generalized additive models adjusted for year, day of week, fine particulate matter, ozone, temperature, and a smoothed term for day of year. RESULTS: WFS impacted the study area on 10% of county-days. We observed a positive association between the presence of WFS and all-cause mortality risk (incidence rate ratio (IRR) = 1.03, 95%CI: 1.01-1.04 for same-day exposures) during the period before the pandemic; however, WFS exposure during the pandemic resulted in decreased risk of all-cause mortality (IRR = 0.90, 95%CI: 0.87-0.93 for same-day exposures). DISCUSSION: We hypothesize that mitigation efforts during the first year of the pandemic, e.g., mask mandates, along with high ambient WFS levels encouraged health behaviors that reduced exposure to WFS and reduced risk of all-cause mortality. Our results suggest a need to examine how associations between WFS and mortality are impacted by pandemic-related factors and that there may be lessons from the pandemic that could be translated into health-protective policies during future wildfire events.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Incendios Forestales , Humanos , Humo/efectos adversos , Pandemias , Colorado/epidemiología , Exposición a Riesgos Ambientales , COVID-19/epidemiología , Material Particulado/análisis , Nicotiana , Contaminantes Atmosféricos/análisis
3.
Biometrics ; 79(3): 2592-2604, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35788984

RESUMEN

Exposure to air pollution is associated with increased morbidity and mortality. Recent technological advancements permit the collection of time-resolved personal exposure data. Such data are often incomplete with missing observations and exposures below the limit of detection, which limit their use in health effects studies. In this paper, we develop an infinite hidden Markov model for multiple asynchronous multivariate time series with missing data. Our model is designed to include covariates that can inform transitions among hidden states. We implement beam sampling, a combination of slice sampling and dynamic programming, to sample the hidden states, and a Bayesian multiple imputation algorithm to impute missing data. In simulation studies, our model excels in estimating hidden states and state-specific means and imputing observations that are missing at random or below the limit of detection. We validate our imputation approach on data from the Fort Collins Commuter Study. We show that the estimated hidden states improve imputations for data that are missing at random compared to existing approaches. In a case study of the Fort Collins Commuter Study, we describe the inferential gains obtained from our model including improved imputation of missing data and the ability to identify shared patterns in activity and exposure among repeated sampling days for individuals and among distinct individuals.


Asunto(s)
Algoritmos , Modelos Estadísticos , Humanos , Teorema de Bayes , Factores de Tiempo , Interpretación Estadística de Datos , Simulación por Computador
4.
Environ Health ; 21(1): 111, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36401268

RESUMEN

BACKGROUND: Both environmental and social factors have been linked to birth weight and adiposity at birth, but few studies consider the effects of exposure mixtures. Our objective was to identify which components of a mixture of neighborhood-level environmental and social exposures were driving associations with birth weight and adiposity at birth in the Healthy Start cohort. METHODS: Exposures were assessed at the census tract level and included air pollution, built environment characteristics, and socioeconomic status. Prenatal exposures were assigned based on address at enrollment. Birth weight was measured at delivery and adiposity was measured using air displacement plethysmography within three days. We used non-parametric Bayes shrinkage (NPB) to identify exposures that were associated with our outcomes of interest. NPB models were compared to single-predictor linear regression. We also included generalized additive models (GAM) to assess nonlinear relationships. All regression models were adjusted for individual-level covariates, including maternal age, pre-pregnancy BMI, and smoking. RESULTS: Results from NPB models showed most exposures were negatively associated with birth weight, though credible intervals were wide and generally contained zero. However, the NPB model identified an interaction between ozone and temperature on birth weight, and the GAM suggested potential non-linear relationships. For associations between ozone or temperature with birth weight, we observed effect modification by maternal race/ethnicity, where effects were stronger for mothers who identified as a race or ethnicity other than non-Hispanic White. No associations with adiposity at birth were observed. CONCLUSIONS: NPB identified prenatal exposures to ozone and temperature as predictors of birth weight, and mothers who identify as a race or ethnicity other than non-Hispanic White might be disproportionately impacted. However, NPB models may have limited applicability when non-linear effects are present. Future work should consider a two-stage approach where NPB is used to reduce dimensionality and alternative approaches examine non-linear effects.


Asunto(s)
Composición Corporal , Ozono , Humanos , Recién Nacido , Embarazo , Femenino , Peso al Nacer , Teorema de Bayes , Obesidad
5.
Environmetrics ; : e2751, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35945947

RESUMEN

Recent ecological analyses suggest air pollution exposure may increase susceptibility to and severity of coronavirus disease 2019 (COVID-19). Individual-level studies are needed to clarify the relationship between air pollution exposure and COVID-19 outcomes. We conduct an individual-level analysis of long-term exposure to air pollution and weather on peak COVID-19 severity. We develop a Bayesian multinomial logistic regression model with a multiple imputation approach to impute partially missing health outcomes. Our approach is based on the stick-breaking representation of the multinomial distribution, which offers computational advantages, but presents challenges in interpreting regression coefficients. We propose a novel inferential approach to address these challenges. In a simulation study, we demonstrate our method's ability to impute missing outcome data and improve estimation of regression coefficients compared to a complete case analysis. In our analysis of 55,273 COVID-19 cases in Denver, Colorado, increased annual exposure to fine particulate matter in the year prior to the pandemic was associated with increased risk of severe COVID-19 outcomes. We also found COVID-19 disease severity to be associated with interactions between exposures. Our individual-level analysis fills a gap in the literature and helps to elucidate the association between long-term exposure to air pollution and COVID-19 outcomes.

6.
PLoS One ; 16(3): e0249236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33765068

RESUMEN

Challenges arise in researching health effects associated with chemical mixtures. Several methods have recently been proposed for estimating the association between health outcomes and exposure to chemical mixtures, but a formal simulation study comparing broad-ranging methods is lacking. We select five recently developed methods and evaluate their performance in estimating the exposure-response function, identifying active mixture components, and identifying interactions in a simulation study. Bayesian kernel machine regression (BKMR) and nonparametric Bayes shrinkage (NPB) were top-performing methods in our simulation study. BKMR and NPB outperformed other contemporary methods and traditional linear models in estimating the exposure-response function and identifying active mixture components. BKMR and NPB produced similar results in a data analysis of the effects of multipollutant exposure on lung function in children with asthma.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Modelos Estadísticos , Contaminantes Atmosféricos/toxicidad , Asma/etiología , Asma/patología , Teorema de Bayes , Niño , Volumen Espiratorio Forzado/efectos de los fármacos , Humanos , Dióxido de Nitrógeno/química , Ozono/química , Material Particulado/química , Material Particulado/toxicidad , Plaguicidas/toxicidad
7.
Environ Res ; 190: 109903, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32750551

RESUMEN

BACKGROUND: Ambient environmental pollutants have been shown to adversely affect respiratory health in susceptible populations. However, the role of simultaneous exposure to multiple diverse environmental pollutants is poorly understood. OBJECTIVE: We applied a multidomain, multipollutant approach to assess the association between pediatric lung function measures and selected ambient air pollutants and pesticides. METHODS: Using data from the US EPA and California Pesticide Use Registry, we reconstructed three months prior exposure to ambient air pollutants ((ozone (O3), nitrogen dioxide (NO2), particulate matter with a median aerodynamic diameter < 2.5 µm (PM2.5) and <10 µm (PM10)) and pesticides (organophosphates (OP), carbamates (C) and methyl bromide (MeBr)) for 153 children with mild intermittent or mild persistent asthma from the San Joaquin Valley of California, USA. We implemented Bayesian kernel machine regression (BKMR) to estimate the association between simultaneous exposures to air pollutants and pesticides and lung function measures (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and forced expiratory flow between 25% and 75% of vital capacity (FEF25-75)). RESULTS: In BKMR analysis, the overall effect of mixtures (pollutants and pesticides) was associated with reduced FEV1 and FVC, particularly when all the environmental exposures were above their 60th percentile. For example, the effect of the overall mixture at the 70th percentile (compared to the median) was a -0.12SD (-50 mL, 95% CI: -180 mL, 90 mL) change in the FEV1 and a -0.18SD (-90 mL, 95% CI: -240 mL, 60 mL) change in the FVC. However, 95% credible intervals around all of the joint effect estimates contained the null value. CONCLUSION: At this agricultural-urban interface, we observed results from multipollutant analyses, suggestive of adverse effects on some pediatric lung function measures following a cumulative increase in ambient air pollutants and agricultural pesticides. Given the uncertainty in effect estimates, this approach should be explored in larger studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Ozono , Plaguicidas , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Asma/inducido químicamente , Asma/epidemiología , Teorema de Bayes , Niño , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Pulmón , Dióxido de Nitrógeno/análisis , Ozono/análisis , Material Particulado/análisis , Plaguicidas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...