Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 413: 125428, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33618268

RESUMEN

Hydroxyapatite (HAp) powder was produced from chicken (femur and beak) and fishbone wastes and used as a green adsorbent to decrease Cd2+ from aqueous media. The HAp powder was generated at 900 °C and characterized using physicochemical techniques. Chicken femur' HAp (16.72 m2/g) had a higher surface compared to chicken beak and fishbone ones. The solution pH was the most important parameter in removing Cd2+. The highest Cd2+ removal was achieved at pH 6, temperature of 25 °C, contact time of 80 min, and adsorbent mass of 2 g/L. The Cd2+ adsorption data fitted well with the quasi-second-order model in kinetics and the Freundlich model in isotherm. The highest adsorption capacity of Cd2+ using HAp-chicken femur, HAp-fish bone, and HAp-chicken beak was determined 22.94 mg/g, 21.54 mg/g, and 21.45 mg/g, respectively. The Cd2+ adsorption using HAp powder was a spontaneous and exothermic process and accidental collisions at the liquid-solid interface were reduced. The decrease of Cd2+ adsorption efficiency was not significant after multiple recovery steps of the desired powders. In addition to Cd2+, other parameters of real wastewater (shipbuilding industry) were reduced by the proposed adsorbents. The utilization of hydroxyapatite powder is expected to be a cheap and eco-friendly method for eliminating metals such as Cd2+.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Animales , Pico/química , Materiales Biocompatibles , Cadmio , Pollos , Durapatita , Fémur/química , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...