Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 566, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740234

RESUMEN

BACKGROUND: Olive oil contains monounsaturated oleic acid up to 83% and phenolic compounds, making it an excellent source of fat. Due to its economic importance, the quantity and quality of olive oil should be improved in parallel with international standards. In this study, we analyzed the raw RNA-seq data with a meta-analysis approach to identify important genes and their metabolic pathways involved in olive oil quality. RESULTS: A deep search of RNA-seq published data shed light on thirty-nine experiments associated with the olive transcriptome, four of these proved to be ideal for meta-analysis. Meta-analysis confirmed the genes identified in previous studies and released new genes, which were not identified before. According to the IDR index, the meta-analysis had good power to identify new differentially expressed genes. The key genes were investigated in the metabolic pathways and were grouped into four classes based on the biosynthetic cycle of fatty acids and factors that affect oil quality. Galactose metabolism, glycolysis pathway, pyruvate metabolism, fatty acid biosynthesis, glycerolipid metabolism, and terpenoid backbone biosynthesis were the main pathways in olive oil quality. In galactose metabolism, raffinose is a suitable source of carbon along with other available sources for carbon in fruit development. The results showed that the biosynthesis of acetyl-CoA in glycolysis and pyruvate metabolism is a stable pathway to begin the biosynthesis of fatty acids. Key genes in oleic acid production as an indicator of oil quality and critical genes that played an important role in production of triacylglycerols were identified in different developmental stages. In the minor compound, the terpenoid backbone biosynthesis was investigated and important enzymes were identified as an interconnected network that produces important precursors for the synthesis of a monoterpene, diterpene, triterpene, tetraterpene, and sesquiterpene biosynthesis. CONCLUSIONS: The results of the current investigation can produce functional data related to the quality of olive oil and would be a useful step in reducing the time of cultivar screening by developing gene specific markers in olive breeding programs, releasing also new genes that could be applied in the genome editing approach.


Asunto(s)
Olea , Olea/genética , Galactosa , Aceite de Oliva , Transcriptoma , Fitomejoramiento , Carbono , Ácidos Grasos , Ácidos Oléicos , Terpenos , Piruvatos
2.
3 Biotech ; 13(11): 347, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37750167

RESUMEN

The study presents the genome analysis of a new Pseudomonas sp. (SWRIQ11), which can alleviate salinity stress effects on growth of olive seedlings in greenhouse study. The strain SWRIQ11 can tolerate salinity up to 6%, produce siderophores, indole acetic acid (IAA), aminocyclopropane-1-carboxylate (ACC) deaminase, and has the phosphate-solubilizing capability. The SWRIQ11 genome contained an assembly size of 6,196,390 bp with a GC content of 60.1%. According to derived indices based on whole-genome sequences for species delineation, including tetra nucleotide usage patterns (TETRA), genome-to-genome distance (GGDC), and average nucleotide identity (ANI), Pseudomonas sp. SWRIQ11 can be considered a novel species candidate. The phylogenetic analysis revealed SWRIQ11 clusters with Pseudomonas tehranensis SWRI196 in the same clade. The SWRIQ11 genome was rich in genes related to stress sensing, signaling, and response, chaperones, motility, attachments, colonization, and enzymes for degrading plant-derived carbohydrates. Furthermore, the genes for production of exopolysaccharides, osmoprotectants, phytohormones, and ACC deaminase, ion homeostasis, nutrient acquisition, and antioxidant defenses were identified in the SWRIQ11 genome. The results of genome analysis (identification of more than 825 CDSs related to plant growth-promoting and stress-alleviating traits in the SWRIQ11 genome which is more than 15% of its total CDSs) are in accordance with laboratory and greenhouse experiments assigning the Pseudomonas sp. SWRIQ11 as a halotolerant plant growth-promoting bacterium (PGPB). This research highlights the potential safe application of this new PGPB species in agriculture as a potent biofertilizer.

3.
Front Plant Sci ; 14: 1140270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229112

RESUMEN

Olive (Olea europaea L.) is one of the most cultivated tree species in Iran. This plant is characterized by its tolerance to drought, salt, and heat stresses while being vulnerable to frost. During the last decade, periods of frost have occurred several times in Golestan Province, in the northeast of Iran, which caused severe damage to olive groves. This study aimed to evaluate and individuate autochthonous Iranian olive varieties with regard to frost tolerance and good agronomic performance. For this purpose, 218 frost-tolerant olive trees were selected from 150,000 adult olive trees (15-25 years old), following the last harsh autumn of 2016. The selected trees were reassessed at different intervals, i.e., 1, 4, and 7 months after the cold stress in field conditions. Using 19 morpho-agronomic traits, 45 individual trees with relatively stable frost-tolerance were reevaluated and selected for this research. Ten highly discriminating microsatellite markers were used for the genetic profiling of the 45 selected olive trees, and, ultimately, five genotypes with the highest tolerance among 45 selected ones were placed in a cold room at freezing temperatures for image analyses of cold damage. The results of morpho-agronomic analyses evidenced no bark splitting or symptoms of leaf drop in the 45 cold-tolerant olives (CTOs). The oil content of the cold-tolerant trees comprised almost 40% of the fruit dry weight, highlighting the potential of these varieties for oil production. Moreover, through molecular characterization, 36 unique molecular profiles were individuated among the 45 analyzed CTOs that were genetically more similar to the Mediterranean olive cultivars than the Iranian ones. The present study demonstrated the high potential of local olive varieties, which would be promising and more suitable than commercial olive varieties, with regard to the establishment of olive groves under cold climate conditions. This could be a valuable genetic resource for future breeding activities to face climate changes.

4.
Front Genet ; 14: 1049608, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139239

RESUMEN

The application of plant growth-promoting bacteria (PGPB) is vital for sustainable agriculture with continuous world population growth and an increase in soil salinity. Salinity is one of the severe abiotic stresses which lessens the productivity of agricultural lands. Plant growth-promoting bacteria are key players in solving this problem and can mitigate salinity stress. The highest of reported halotolerant Plant growth-promoting bacteria belonged to Firmicutes (approximately 50%), Proteobacteria (40%), and Actinobacteria (10%), respectively. The most dominant genera of halotolerant plant growth-promoting bacteria are Bacillus and Pseudomonas. Currently, the identification of new plant growth-promoting bacteria with special beneficial properties is increasingly needed. Moreover, for the effective use of plant growth-promoting bacteria in agriculture, the unknown molecular aspects of their function and interaction with plants must be defined. Omics and meta-omics studies can unreveal these unknown genes and pathways. However, more accurate omics studies need a detailed understanding of so far known molecular mechanisms of plant stress protection by plant growth-promoting bacteria. In this review, the molecular basis of salinity stress mitigation by plant growth-promoting bacteria is presented, the identified genes in the genomes of 20 halotolerant plant growth-promoting bacteria are assessed, and the prevalence of their involved genes is highlighted. The genes related to the synthesis of indole acetic acid (IAA) (70%), siderophores (60%), osmoprotectants (80%), chaperons (40%), 1-aminocyclopropane-1-carboxylate (ACC) deaminase (50%), and antioxidants (50%), phosphate solubilization (60%), and ion homeostasis (80%) were the most common detected genes in the genomes of evaluated halotolerant plant growth-promoting and salinity stress-alleviating bacteria. The most prevalent genes can be applied as candidates for designing molecular markers for screening of new halotolerant plant growth-promoting bacteria.

5.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616641

RESUMEN

The draft genome sequence of wheat rhizosphere isolate Pseudomonas sp. strain SWRI103 is reported. This strain carries several gene clusters encoding nonribosomal peptide synthetases (NRPSs), including a system for cyclic lipopeptide (CLP) production, and genes for carotenoid biosynthesis.

6.
Iran J Biotechnol ; 17(1): e1967, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31457043

RESUMEN

BACKGROUND: According to the epidemiological studies, consuming olive products can decrease the incidence of the different types of cancers mostly due to the high anti-oxidant properties of their polyphenolic compounds. OBJECTIVES: To evaluate the anti-oxidant and anti-proliferative potentials of the olive fruits total polyphenols on the gastric adenocarcinoma MKN45 cells in comparison to the normal Hu02 cells. MATERIALS AND METHODS: The total phenolic content of the olive fruits and radical scavenging activity were determined by Folin and 2,2-diphenyl-1-picrylhydrazyl (DPPH) tests respectively. MTT assay was performed for the evaluation of the cell viability. Intracellular reactive oxygen species (ROS) level was measured using DCFH-DA. Statistical analysis was performed using SPSS 16 statistical software. RESULTS: Treatment of the MKN45 cells with the phenolic compounds extracted from olive fruits decreased growth and viability of the cells in a dose- and time-dependent manner. In addition, treatment of the MKN45 cells with a combination of the phenolic compounds extracts and cytarabine further decreased cell compared to monotherapy of the cells with each compound alone. Mechanistically, we showed that the anti-cancer effects of the olive polyphenols in the MKN45 cells are mediated through depletion of ROS. Similarly, polyphenolic extracts were found to decrease ROS level in the normal cells at the concentrations of 500 and 1000 µg.mL-1 and short treatment times (6 h), but the viability of these cells did not significantly change. At high concentrations (2000 µg.mL-1) of the phenolic extracts or at longer times of incubation (12 h), however, both ROS levels and the viability of the cells were significantly decreased in the normal cells. CONCLUSIONS: The olive fruits polyphenolic extract modulates ROS levels and selectively targets cancerous cells at low concentrations. Also, the effects of cytarabine could be potentiated by the olive fruits polyphenols. Thus, for a combined protocol of cancer cell therapy, olive fruit polyphenolic compound could be proposed as a proper candidate.

7.
J Biol Chem ; 294(11): 4215-4232, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30655291

RESUMEN

Aggregation of α-synuclein (αSN) is implicated in neuronal degeneration in Parkinson's disease and has prompted searches for natural compounds inhibiting αSN aggregation and reducing its tendency to form toxic oligomers. Oil from the olive tree (Olea europaea L.) represents the main source of fat in the Mediterranean diet and contains variable levels of phenolic compounds, many structurally related to the compound oleuropein. Here, using αSN aggregation, fibrillation, size-exclusion chromatography-multiangle light scattering (SEC-MALS)-based assays, and toxicity assays, we systematically screened the fruit extracts of 15 different olive varieties to identify compounds that can inhibit αSN aggregation and oligomer toxicity and also have antioxidant activity. Polyphenol composition differed markedly among varieties. The variety with the most effective antioxidant and aggregation activities, Koroneiki, combined strong inhibition of αSN fibril nucleation and elongation with strong disaggregation activity on preformed fibrils and prevented the formation of toxic αSN oligomers. Fractionation of the Koroneiki extract identified oleuropein aglycone, hydroxyl oleuropein aglycone, and oleuropein as key compounds responsible for the differences in inhibition across the extracts. These phenolic compounds inhibited αSN amyloidogenesis by directing αSN monomers into small αSN oligomers with lower toxicity, thereby suppressing the subsequent fibril growth phase. Our results highlight the molecular consequences of differences in the level of effective phenolic compounds in different olive varieties, insights that have implications for long-term human health.


Asunto(s)
Frutas/química , Iridoides/farmacología , Olea/química , alfa-Sinucleína/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía en Gel , Relación Dosis-Respuesta a Droga , Humanos , Glucósidos Iridoides , Iridoides/química , Iridoides/aislamiento & purificación , Luz , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
8.
Ann Bot ; 119(8): 1305-1318, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28387783

RESUMEN

Background and Aims: Olive is considered a native plant of the eastern side of the Mediterranean basin, from where it should have spread westward along the Mediterranean shores, while little is known about its diffusion in the eastern direction. Methods: Genetic diversity levels and population genetic structure of a wide set of olive ecotypes and varieties collected from several provinces of Iran, representing a high percentage of the entire olive resources present in the area, was screened with 49 chloroplast and ten nuclear simple sequence repeat markers, and coupled with archaeo-botanical and historical data on Mediterranean olive varieties. Approximate Bayesian Computation was applied to define the demographic history of olives including Iranian germplasm, and species distribution modelling was performed to understand the impact of the Late Quaternary on olive distribution. Key Results: The results of the present study demonstrated that: (1) the climatic conditions of the last glacial maximum had an important role on the actual olive distribution, (2) all Iranian olive samples had the same maternal inheritance as Mediterranean cultivars, and (3) the nuclear gene flow from the Mediterranean basin to the Iranian plateau was almost absent, as well as the contribution of subspecies cuspidata to the diversity of Iranian olives. Conclusions: Based on this evidence, a new scenario for the origin and distribution of this important fruit crop has been traced. The evaluation of olive trees growing in the eastern part of the Levant highlighted a new perspective on the spread and distribution of olive, suggesting two routes of olive differentiation, one westward, spreading along the Mediterranean basin, and another moving towards the east and reaching the Iranian plateau before its domestication.


Asunto(s)
Variación Genética , Olea/genética , Teorema de Bayes , ADN de Cloroplastos/genética , Flujo Génico , Patrón de Herencia , Irán , Repeticiones de Microsatélite
9.
J Agric Food Chem ; 64(41): 7770-7781, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27690417

RESUMEN

The specific contribution of different stearoyl-ACP desaturase (SAD) genes to the oleic acid content in olive (Olea europaea) fruit has been studied. Toward that end, we isolated three distinct cDNA clones encoding three SAD isoforms from olive (cv. Picual), as revealed by sequence analysis. The expression levels of olive SAD genes were determined in different tissues from Picual and Arbequina cultivars, including developing mesocarp and seed, together with the unsaturated fatty acid content. Lipid and gene expression analyses indicate that OeSAD2 seems to be the main gene contributing to the oleic acid content of the olive fruit and, therefore, of the virgin olive oil. This conclusion was confirmed when the study was extended to Hojiblanca, Picudo, and Manzanilla cultivars. Furthermore, our data indicate that the olive microsomal oleate desaturase gene OeFAD2-2, but not OeSAD2, is responsible for the linoleic acid content in the virgin olive oil.

10.
PLoS One ; 10(11): e0143465, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26599001

RESUMEN

Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data. In this study, we developed a new combined approach of data analysis using microsatellite marker data from our previous studies of olive populations using machine learning algorithms. Herein, 267 olive accessions of various origins including 21 reference cultivars, 132 local ecotypes, and 37 wild olive specimens from the Iranian plateau, together with 77 of the most represented Mediterranean varieties were investigated using a finely selected panel of 11 microsatellite markers. We organized data in two '4-targeted' and '16-targeted' experiments. A strategy of assaying different machine based analyses (i.e. data cleaning, feature selection, and machine learning classification) was devised to identify the most informative loci and the most diagnostic alleles to represent the population and the geography of each olive accession. These analyses revealed microsatellite markers with the highest differentiating capacity and proved efficiency for our method of clustering olive accessions to reflect upon their regions of origin. A distinguished highlight of this study was the discovery of the best combination of markers for better differentiating of populations via machine learning models, which can be exploited to distinguish among other biological populations.


Asunto(s)
Biología Computacional/métodos , Aprendizaje Automático , Repeticiones de Microsatélite , Olea/genética , Algoritmos , Alelos , Teorema de Bayes , ADN de Plantas/genética , Árboles de Decisión , Genes de Plantas , Variación Genética , Genotipo , Geografía , Irán , Filogeografía , Reproducibilidad de los Resultados
11.
Plant Cell Rep ; 34(7): 1151-64, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25749737

RESUMEN

KEY MESSAGE: Different rooting ability candidate genes were tested on an olive cross progeny. Our results demonstrated that only the AOX2 gene was strongly induced. OeAOX2 was fully characterised and correlated to phenotypical traits. The formation of adventitious roots is a key step in the vegetative propagation of trees crop species, and this ability is under strict genetic control. While numerous studies have been carried out to identify genes controlling adventitious root formation, only a few loci have been characterised. In this work, candidate genes that were putatively involved in rooting ability were identified in olive (Olea europaea L.) by similarity with orthologs identified in other plant species. The mRNA levels of these genes were analysed by real-time PCR during root induction in high- (HR) and low-rooting (LR) individuals. Interestingly, alternative oxidase 2 (AOX2), which was previously reported to be a functional marker for rooting in olive cuttings, showed a strong induction in HR individuals. From the OeAOX2 full-length gene, alleles and effective polymorphisms were distinguished and analysed in the cross progeny, which were segregated based on rooting. The results revealed a possible correlation between two single nucleotide polymorphisms of OeAOX2 gene and rooting ability.


Asunto(s)
Genes de Plantas , Proteínas Mitocondriales/genética , Olea/enzimología , Olea/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Alelos , Secuencia de Bases , Secuencia Conservada/genética , Cruzamientos Genéticos , Regulación de la Expresión Génica de las Plantas , Genómica , Genotipo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transcripción Genética
12.
PLoS One ; 9(4): e93146, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24709858

RESUMEN

BACKGROUND: Olive trees (Olea europaea subsp. europaea var. europaea) naturally grow in areas spanning the Mediterranean basin and towards the East, including the Middle East. In the Iranian plateau, the presence of olives has been documented since very ancient times, though the early history of the crop in this area is shrouded in uncertainty. METHODS: The varieties presently cultivated in Iran and trees of an unknown cultivation status, surviving under extreme climate and soil conditions, were sampled from different provinces and compared with a set of Mediterranean cultivars. All samples were analyzed using SSR and chloroplast markers to establish the relationships between Iranian olives and Mediterranean varieties, to shed light on the origins of Iranian olives and to verify their contribution to the development of the current global olive variation. RESULTS: Iranian cultivars and ecotypes, when analyzed using SSR markers, clustered separately from Mediterranean cultivars and showed a high number of private alleles, on the contrary, they shared the same single chlorotype with the most widespread varieties cultivated in the Mediterranean. CONCLUSION: We hypothesized that Iranian and Mediterranean olive trees may have had a common origin from a unique center in the Near East region, possibly including the western Iranian area. The present pattern of variation may have derived from different environmental conditions, distinct levels and selection criteria, and divergent breeding opportunities found by Mediterranean and Iranian olives.These unexpected findings emphasize the importance of studying the Iranian olive germplasm as a promising but endangered source of variation.


Asunto(s)
Alelos , Cloroplastos/genética , Ecosistema , Variación Genética , Olea/genética , Marcadores Genéticos , Irán , Mar Mediterráneo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA