Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tissue Eng Part A ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38753711

RESUMEN

Rationale: Elevated shear stress (ESS) induces vascular remodeling in veins exposed to arterial blood flow, which can lead to arteriovenous (AV) fistula failure. The molecular mechanisms driving remodeling have not been comprehensively examined with a single-cell resolution before. Objective: Using an in vivo animal mode, single-cell RNA sequencing, and histopathology, we precisely manipulate blood flow to comprehensively characterize all cell subpopulations important during vascular remodeling. Methods: AV loops were created in saphenous vessels of rats using a contralateral saphenous vein interposition graft to promote ESS. Saphenous veins with no elevated shear stress (NSS) were anastomosed as controls. Findings: ESS promoted transcriptional homogeneity, and NSS promoted considerable heterogeneity. Specifically, ESS endothelial cells (ECs) showed a more homogeneous transcriptional response promoting angiogenesis and upregulating endothelial-to-mesenchymal transition inhibiting genes (Klf2). NSS ECs upregulated antiproliferation genes such as Cav1, Cst3, and Btg1. In macrophages, ESS promoted a large homogeneous subpopulation, creating a mechanically activated, proinflammatory and thus proangiogenic myeloid phenotype, whereas NSS myeloid cells expressed the anti-inflammatory and antiangiogenetic marker Mrc1. Conclusion: ESS activates unified gene expression profiles to induce adaption of the vessel wall to hemodynamic alterations. Targeted depletion of the identified cellular subpopulations may lead to novel therapies to prevent excessive venous remodeling, intimal hyperplasia, and AV fistula failure.

2.
Adv Wound Care (New Rochelle) ; 13(4): 155-166, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38299969

RESUMEN

Objective: Given the significant economic, health care, and personal burden of acute and chronic wounds, we investigated the dose dependent wound healing mechanisms of two Avena sativa derived compounds: avenanthramide (AVN) and ß-Glucan. Approach: We utilized a splinted excisional wound model that mimics human-like wound healing and performed subcutaneous AVN and ß-Glucan injections in 15-week-old C57BL/6 mice. Histologic and immunohistochemical analysis was performed on the explanted scar tissue to assess changes in collagen architecture and cellular responses. Results: AVN and ß-Glucan treatment provided therapeutic benefits at a 1% dose by weight in a phosphate-buffered saline vehicle, including accelerated healing time, beneficial cellular recruitment, and improved tissue architecture of healed scars. One percent AVN treatment promoted an extracellular matrix (ECM) architecture similar to unwounded skin, with shorter, more randomly aligned collagen fibers and reduced inflammatory cell presence in the healed tissue. One percent ß-Glucan treatment promoted a tissue architecture characterized by long, thick bundles of collagen with increased blood vessel density. Innovation: AVN and ß-Glucan have previously shown promise in promoting wound healing, although the therapeutic efficacies and mechanisms of these bioactive compounds remain incompletely understood. Furthermore, the healed ECM architecture of these wounds has not been characterized. Conclusions: AVN and ß-Glucan accelerated wound closure compared to controls through distinct mechanisms. AVN-treated scars displayed a more regenerative tissue architecture with reduced inflammatory cell recruitment, while ß-Glucan demonstrated increased angiogenesis with more highly aligned tissue architecture more indicative of fibrosis. A deeper understanding of the mechanisms driving healing in these two naturally derived therapeutics will be important for translation to human use.


Asunto(s)
Cicatriz , beta-Glucanos , ortoaminobenzoatos , Animales , Ratones , beta-Glucanos/farmacología , Colágeno , Ratones Endogámicos C57BL , Cicatrización de Heridas
5.
Front Med (Lausanne) ; 10: 1060758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999070

RESUMEN

Introduction: According to the American Diabetes Association (ADA), 9-12 million patients suffer from chronic ulceration each year, costing the healthcare system over USD $25 billion annually. There is a significant unmet need for new and efficacious therapies to accelerate closure of non-healing wounds. Nitric Oxide (NO) levels typically increase rapidly after skin injury in the inflammatory phase and gradually diminish as wound healing progresses. The effect of increased NO concentration on promoting re-epithelization and wound closure has yet to be described in the context of diabetic wound healing. Methods: In this study, we investigated the effects of local administration of an NO-releasing gel on excisional wound healing in diabetic mice. The excisional wounds of each mouse received either NO-releasing gel or a control phosphate-buffered saline (PBS)-releasing gel treatment twice daily until complete wound closure. Results: Topical administration of NO-gel significantly accelerated the rate of wound healing as compared with PBS-gel-treated mice during the later stages of healing. The treatment also promoted a more regenerative ECM architecture resulting in shorter, less dense, and more randomly aligned collagen fibers within the healed scars, similar to that of unwounded skin. Wound healing promoting factors fibronectin, TGF-ß1, CD31, and VEGF were significantly elevated in NO vs. PBS-gel-treated wounds. Discussion: The results of this work may have important clinical implications for the management of patients with non-healing wounds.

6.
Bio Protoc ; 13(3): e4606, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36816987

RESUMEN

While wound healing in humans occurs primarily through re-epithelization, in rodents it also occurs through contraction of the panniculus carnosus, an underlying muscle layer that humans do not possess. Murine experimental models are by far the most convenient and inexpensive research model to study wound healing, as they offer great variability in genetic alterations and disease models. To overcome the obstacle of contraction biasing wound healing kinetics, our group invented the splinted excisional wound model. While other rodent wound healing models have been used in the past, the splinted excisional wound model has persisted as the most used model in the field of wound healing. Here, we present a detailed protocol of updated and refined techniques necessary to utilize this model, generate results with high validity, and accurately analyze the collected data. This model is simple to conduct and provides an easy, standardizable, and replicable model of human-like wound healing.

7.
J Cell Physiol ; 234(2): 1088-1098, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30203485

RESUMEN

Bovine mammary epithelial cells (MAC-Ts) are a common cell line for the study of mammary epithelial inflammation; these cells are used to mechanistically elucidate molecular underpinnings that contribute to bovine mastitis. Bovine mastitis is the most prevalent form of disease in dairy cattle that culminates in annual losses of two billion dollars for the US dairy industry. Thus, there is an urgent need for improved therapeutic strategies. Histone deacetylase (HDAC) inhibitors are efficacious in rodent models of inflammation, yet their role in bovine mammary cells remain unclear. HDACs have traditionally been studied in the regulation of nucleosomal DNA, in which deacetylation of histones impact chromatin accessibility and gene expression. Using MAC-T cells stimulated with tumor necrosis factor α (TNF-α) as a model for mammary cell inflammation, we report that inhibition of HDACs1 and 2 (HDAC1/2) attenuated TNF-α-mediated inflammatory gene expression. Of note, we report that HDAC1/2-mediated inflammatory gene expression was partly regulated by c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation. Here, we report that HDAC1/2 inhibition attenuated JNK and ERK activation and thus inflammatory gene expression. These data suggest that HDACs1 and 2 regulate inflammatory gene expression via canonical (i.e., gene expression) and noncanonical (e.g., signaling dependent) mechanisms. Whereas, further studies using primary cell lines and animal models are needed. Our combined data suggest that HDAC1/2-specific inhibitors may prove efficacious for the treatment of bovine mastitis.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Antiinflamatorios/uso terapéutico , Bovinos , Línea Celular , Células Epiteliales/enzimología , Femenino , Regulación de la Expresión Génica , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Glándulas Mamarias Animales/enzimología , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/enzimología , Fosforilación , Transducción de Señal
8.
Biosci Rep ; 38(5)2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30061171

RESUMEN

Lysine residues undergo diverse and reversible post-translational modifications (PTMs). Lysine acetylation has traditionally been studied in the epigenetic regulation of nucleosomal histones that provides an important mechanism for regulating gene expression. Histone acetylation plays a key role in cardiac remodeling and function. However, recent studies have shown that thousands of proteins can be acetylated at multiple acetylation sites, suggesting the acetylome rivals the kinome as a PTM. Based on this, we examined the impact of obesity on protein lysine acetylation in the left ventricle (LV) of male c57BL/6J mice. We reported that obesity significantly increased heart enlargement and fibrosis. Moreover, immunoblot analysis demonstrated that lysine acetylation was markedly altered with obesity and that this phenomenon was cardiac tissue specific. Mass spectral analysis identified 2515 proteins, of which 65 were significantly impacted by obesity. Ingenuity Pathway Analysis® (IPA) further demonstrated that these proteins were involved in metabolic dysfunction and cardiac remodeling. In addition to total protein, 189 proteins were acetylated, 14 of which were significantly impacted by obesity. IPA identified the Cardiovascular Disease Pathway as significantly regulated by obesity. This network included aconitate hydratase 2 (ACO2), and dihydrolipoyl dehydrogenase (DLD), in which acetylation was significantly increased by obesity. These proteins are known to regulate cardiac function yet, the impact for ACO2 and DLD acetylation remains unclear. Combined, these findings suggest a critical role for cardiac acetylation in obesity-mediated remodeling; this has the potential to elucidate novel targets that regulate cardiac pathology.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Obesidad/metabolismo , Proteínas/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Dieta Alta en Grasa/efectos adversos , Lisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/fisiopatología , Procesamiento Proteico-Postraduccional , Proteínas/genética , Proteoma/análisis , Proteoma/metabolismo , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...