Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 284: 116891, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153280

RESUMEN

Shrimp are non-negligible victims of cadmium (Cd) contamination, and there is still a lack of strategies for mitigating Cd toxicity in shrimp. Bacillus cereus, with its significant heavy metal (HM) tolerance and chelating effects, is a representative beneficial bacterium to be investigated for mitigating the toxicity of Cd exposure. This study revealed the effects and potential mechanisms of B. cereus in mitigating chronic Cd toxicity in shrimp by analyzing growth performance, hepatopancreatic Cd accumulation, pathology, as well as comprehensive hepatopancreatic transcriptomics and metabolomics in Litopenaeus vannamei. The results showed that shrimp's growth inhibition, hepatopancreatic Cd accumulation and physiological structure damage in B. cereus+chronic Cd group were effectively alleviated compared with the chronic Cd treatment group. The pathways related to amino acid metabolism, glycolipid metabolism, immune response, and antioxidant stress were significantly activated in the B. cereus+chronic Cd group, including glycolysis, pentose phosphate pathway, oxidative phosphorylation, biosynthesis of amino acids, and biosynthesis of unsaturated fatty acids pathways. The key differentially expressed genes (e.g., macrophage migration inhibitory factor, glycine cleavage system H protein, glycine dehydrogenase, phosphoglucomutase-2, asparaginase, ATP synthase subunit, cytochrome c, and 4-hydroxyphenylpyruvate dioxygenase) and metabolites (e.g., L-leucine, D-ribose, gluconic acid, 6-Phosphogluconic acid, sedoheptulose 7-phosphate, 1-Kestose, glyceric acid, arachidic acid, prostaglandins, 12-Keto-tetrahydro-leukotriene B4, and gamma-glutamylcysteine) associated with the above pathways were significantly altered. This study demonstrated that B. cereus is an effective mitigator for the treatment of chronic Cd poisoning in shrimp. B. cereus may play a role in alleviating the toxicity of Cd by enhancing the antioxidant performance, immune defense ability, metabolic stability, and energy demand regulation of shrimp. The study provides reference materials for the study of B. cereus in alleviating Cd toxicity of shrimp and broadens the application of probiotics in treating HM toxicity.

2.
Chemosphere ; 361: 142578, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857631

RESUMEN

Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 µg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 µg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 µg/L Cd2+, and Maribacter at 300 µg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 µg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.


Asunto(s)
Cadmio , Metaboloma , Penaeidae , Contaminantes Químicos del Agua , Animales , Cadmio/toxicidad , Penaeidae/efectos de los fármacos , Penaeidae/crecimiento & desarrollo , Penaeidae/microbiología , Penaeidae/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Metaboloma/efectos de los fármacos , Microbiota/efectos de los fármacos , Acuicultura , Microbioma Gastrointestinal/efectos de los fármacos , Branquias/metabolismo , Branquias/efectos de los fármacos
3.
Fish Shellfish Immunol ; 142: 109097, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751788

RESUMEN

In this study, a strain (recorded as Y6) was isolated from the biofloc pool, its DNA was extracted for 16S rDNA sequencing and compared in the NCBI database, and it was identified as Vibrio fortis. The V. fortis was activated, cultured, and artificially injected into Penaeus monodon to observe the symptoms and calculate the semi-lethal concentration (LC50). It was found that the symptoms of the red leg, an empty stomach, and enlarged hepatopancreas of P. monodon after infection with V. fortis. The LC50 was 4.00 × 107, 2.24 × 107, 1.82 × 107, 1.41 × 107, 7.52 × 106 and 3.31 × 106 CFU/mL at 16, 24, 32, 48, 128, and 144 hpi, respectively. The K-B disk method was used to detect the sensitivity of V. fortis to various antibiotic drugs. V. fortis resisted Ampicillin, Piperacillin, Cefazolin, Cephalothin and Cefoxitin. Highly sensitive to Polymyxin B, Tobramycin, Gentamicin, Cefepime, Cefoperazone and Streptomycin. To explore the molecular response mechanism of V. fortis infection in P. monodon, the hepatopancreas of P. monodon infected with V. fortis at 24 and 48 hpi by transcriptome sequencing, and a total of 347 DEGs were obtained (214 up-regulated DEGs and 133 down-regulated DEGs). In the KEGG pathway enrichment analysis of DEGs, significant changes were found in genes and signaling pathways related to immune system and substance metabolism, including NOD-like receptor signaling pathways, Toll and Imd signaling pathways, C-type lectin receptor signaling pathways and pyruvate metabolism. This study initially revealed the immune response of P. monodon to V. fortis infection from the molecular level and provided a reference for further understanding of the study and control of the vibriosis of shrimp.


Asunto(s)
Penaeidae , Vibrio , Animales , Transcriptoma , Penaeidae/genética , Virulencia , Vibrio/fisiología
4.
J Fish Dis ; 46(11): 1207-1224, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37589383

RESUMEN

In recent years, due to the destruction of the culture environment and serious ecological pressure, especially in the process of culture, residual bait, faeces and fishery drug abuse will lead to the accumulation of harmful metabolites such as ammonia nitrogen and nitrite, and biological denitrification is the most economical and effective method to remove the single. Therefore, in this study, a nitrite removal strain XA19 was isolated and screened from a shrimp biofloc culture pond. This strain was identified as a clade of Vibrio proteolyticus because the homology between XA19 and V. proteolyticus WDVP was as high as 99.86% by using 16S rDNA gene sequence analysis and NCBI database comparison. Scanning electron microscopy images showed that V. proteolyticus is short-rod-shaped with a curved body and no budding spores, pods and flagella. Antimicrobial susceptibility test proved that V. proteolyticus was resistant to ampicillin, oxacillin, penicillin, vancomycin and clindamycin. In the median lethal concentration 50 (LC50 ) test, at 7-day post-infection (dpi), LC50 of V. proteolyticus for Fenneropenaeus merguiensis was 1.69 × 104 CFU/mL. Transcriptome sequencing analysis was carried out on hepatopancreas of F. merguiensis at 24 and 48 hpi. A total of 176 differentially expressed genes (DEGs) were screened at 24 hpi, including 104 up-regulated DEGs and 72 down-regulated DEGs, and a total of 52 DEGs were screened at 48 hpi, including 32 up-regulated DEGs and 20 down-regulated DEGs. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs, many immune-related signalling pathways were significantly enriched, including Hippo signalling pathway, phagosome, Toll and Imd signalling pathways and Wnt signalling pathway. In addition, some pathways related to Warburg effect were also enriched, including Glycolysis/Gluconeogenesis, Biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism and so on. In this study, the toxicity and drug sensitivity of V. proteolyticus were systematically studied, and the immune response of hepatopancreas of F. merguiensis to V. proteolyticus infection was preliminarily revealed from the molecular level. The results may provide a reference for the prevention and control of V. proteolyticus.

5.
Fish Shellfish Immunol ; 130: 194-205, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36087819

RESUMEN

Vibrio is an important conditional pathogen in shrimp aquaculture. This research reported a dominant bacteria strain E1 isolated from a shrimp tank with the method of biofloc culture, which was further identified as Vibrio owensii. To understand the interaction between V. owensii and the host shrimp, we studied the pathogenicity of the V. owensii and the molecular mechanisms of the Fenneropenaeus merguiensis immunity during the Vibrio invasion. Drug susceptibility tests showed that V. owensii was resistant to antibiotics streptomycin oxacillin, tetracycline, minocycline, and aztreonam, but highly sensitive to cefazolin, cefotaxime, and ciprofloxacin, and moderately sensitive to cefotaxime, ampicillin, and piperacillin. Lethal concentration 50 (LC50) test was performed to evaluate the toxicity of V. owensii to F. merguiensis. The LC50 of V. owensii infected F. merguiensis after 24, 48, 72, 96, 120, 144 and 168 h were 1.21 × 107, 1.68 × 106, 6.36 × 105, 2.15 × 105, 7.58 × 104, 5.55 × 104 and 4.33 × 104 CFU/mL. In order to explore the molecular response mechanism of F. merguiensis infected with V. owensii, the hepatopancreas of F. merguiensis were sequenced at 24 hpi and 48 hpi, and a total 40,181 of unigenes were obtained. Through comparative transcriptomic analysis, 86 differentially expressed genes (DEGs) (including 38 up-regulated DEGs, and 48 down-regulated DEGs) and 305 DEGs (including 150 up-regulated DEGs, and 155 down-regulated DEGs) were identified at 24 hpi and 48 hpi, respectively. Annotation and classification analysis of these 391 DEGs showed that most of the DEGs were annotated to metableolic and immune pathways, which indicated that F. merguiensis responded to the invasion through the regulation of material metableolism and immune system genes during V. owensii infection. In the KEGG enrichment analysis, some pathways related to immune response were significantly influenced by V. owensii infection, including phagosome, MAPK signalling pathway and PI3K-Akt signalling pathway. In addition, some pathways related to the warburg effect were also significantly enriched after V. owensii infection, including pyruvate metableolism, glycolysis/gluconeogenesis, and citrate cycle (TAC cycle). Further analysis showed that C-type lectins and ficolin were also play important roles in the immune response of F. merguiensis against V. owensii infection. The current research preliminarily revealed the immune response of F. merguiensis to V. owensii infection at the molecular level, which provided valuable information to further understand the disease control and the interaction between shrimp and Vibrio.


Asunto(s)
Penaeidae , Vibrio , Ampicilina , Animales , Antibacterianos , Aztreonam , Cefazolina , Cefotaxima , Ciprofloxacina , Citratos , Perfilación de la Expresión Génica/veterinaria , Inmunidad Innata/genética , Lectinas Tipo C/genética , Minociclina , Oxacilina , Fosfatidilinositol 3-Quinasas/genética , Piperacilina , Proteínas Proto-Oncogénicas c-akt/genética , Piruvatos , Estreptomicina , Transcriptoma , Vibrio/fisiología , Virulencia
6.
Front Immunol ; 12: 807093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35116034

RESUMEN

The intestine is not only an important digestive organ but also an important immune organ for shrimp; it plays a key role in maintaining homeostasis. Decapod iridescent virus 1 (DIV1) is a new type of shrimp-lethal virus that has received extensive attention in recent years. To date, most studies of the shrimp intestinal immune response under viral infections have relied on single omics analyses; there is a lack of systematic multi-omics research. In the current study, intestinal mRNA-seq and microRNA (miRNA)-seq analyses of Marsupenaeus japonicus under DIV1 infection were performed. A total of 1,976 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs (DEMs) were identified. Among them, 21 DEMs were negatively correlated with 194 DEGs from a total of 223 correlations. Functional annotation analysis revealed that M. japonicus can regulate glycosaminoglycan biosynthesis (chondroitin sulfate, dermatan sulfate, and keratan sulfate), vitamin metabolism (retinol metabolism and ascorbate and aldarate metabolism), immune pathway activation (Toll and IMD signaling pathways, Wnt signaling pathway, IL-17 signaling pathway, and Hippo signaling pathway), immunity enzyme activity promotion (triose-phosphate isomerase), antimicrobial peptide (AMP) expression, reactive oxygen species (ROS) production, and cell apoptosis through miRNAs to participate in the host's antiviral immune response, while DIV1 can influence Warburg effect-related pathways (pyruvate metabolism, glycolysis/gluconeogenesis, and citrate cycle), glycosphingolipid biosynthesis-related pathways (glycosphingolipid biosynthesis-globo and isoglobo series and glycosphingolipid biosynthesis-lacto and neolacto series), and the tight junction and adhesion junction of the intestinal mucosal epithelium through the host's miRNAs and mRNA to promote its own invasion and replication. These results indicate that intestinal miRNAs play important roles in the shrimp immune response against DIV1 infection. This study provides a basis for further study of the shrimp intestinal antiviral immune response and for the formulation of effective new strategies for the prevention and treatment of DIV1 infection.


Asunto(s)
Enfermedades de los Animales/genética , Enfermedades de los Animales/virología , Biología Computacional , Intestinos/inmunología , Intestinos/metabolismo , MicroARNs/genética , ARN Mensajero/genética , RNA-Seq , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Intestinos/virología , Penaeidae , RNA-Seq/métodos , Reproducibilidad de los Resultados , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...