Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726816

RESUMEN

Layered sodium transition-metal (TM) oxides generally suffer from severe capacity decay and poor rate performance during cycling, especially at a high state of charge (SoC). Herein, an insight into failure mechanisms within high-voltage layered cathodes is unveiled, while a two-in-one tactic of charge localization and coherent structures is devised to improve structural integrity and Na+ transport kinetics, elucidated by density functional theory calculations. Elevated Jahn-Teller [Mn3+O6] concentration on the particle surface during sodiation, coupled with intense interlayer repulsion and adverse oxygen instability, leads to irreversible damage to the near-surface structure, as demonstrated by X-ray absorption spectroscopy and in situ characterization techniques. It is further validated that the structural skeleton is substantially strengthened through the electronic structure modulation surrounding oxygen. Furthermore, optimized Na+ diffusion is effectively attainable via regulating intergrown structures, successfully achieved by the Zn2+ inducer. Greatly, good redox reversibility with an initial Coulombic efficiency of 92.6%, impressive rate capability (86.5 mAh g-1 with 70.4% retention at 10C), and enhanced cycling stability (71.6% retention after 300 cycles at 5C) are exhibited in the P2/O3 biphasic cathode. It is believed that a profound comprehension of layered oxides will herald fresh perspectives to develop high-voltage cathode materials for sodium-ion batteries.

2.
Sci Bull (Beijing) ; 69(6): 772-783, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38310048

RESUMEN

Na4Fe3(PO4)2(P2O7) (NFPP) is currently drawing increased attention as a sodium-ion batteries (SIBs) cathode due to the cost-effective and NASICON-type structure features. Owing to the sluggish electron and Na+ conductivities, however, its real implementation is impeded by the grievous capacity decay and inferior rate capability. Herein, multivalent cation substituted microporous Na3.9Fe2.9Al0.1(PO4)2(P2O7) (NFAPP) with wide operation-temperature is elaborately designed through regulating structure/interface coupled electron/ion transport. Greatly, the derived Na vacancy and charge rearrangement induced by trivalent Al3+ substitution lower the ions diffusion barriers, thereby endowing faster electron transport and Na+ mobility. More importantly, the existing Al-O-P bonds strengthen the local environment and alleviate the volume vibration during (de)sodiation, enabling highly reversible valence variation and structural evolution. As a result, remarkable cyclability (over 10,000 loops), ultrafast rate capability (200 C), and exceptional all-climate stability (-40-60 °C) in half/full cells are demonstrated. Given this, the rational work might provide an actionable strategy to promote the electrochemical property of NFPP, thus unveiling the great application prospect of sodium iron mixed phosphate materials.

3.
Angew Chem Int Ed Engl ; 63(11): e202320075, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38230459

RESUMEN

The utilization rate of active sites in cathode materials for Zn-based batteries is a key factor determining the reversible capacities. However, a long-neglected issue of the strong electrostatic repulsions among divalent Zn2+ in hosts inevitably causes the squander of some active sites (i.e., gap sites). Herein, we address this conundrum by unraveling the "gap-filling" mechanism of multiple charge carriers in aqueous Zn-MoS2 batteries. The tailored MoS2 /(reduced graphene quantum dots) hybrid features an ultra-large interlayer spacing (2.34 nm), superior electrical conductivity/hydrophilicity, and robust layered structure, demonstrating highly reversible NH4 + /Zn2+ /H+ co-insertion/extraction chemistry in the 1 M ZnSO4 +0.5 M (NH4 )2 SO4 aqueous electrolyte. The NH4 + and H+ ions can act as gap fillers to fully utilize the active sites and screen electrostatic interactions to accelerate the Zn2+ diffusion. Thus, unprecedentedly high rate capability (439.5 and 104.3 mAh g-1 at 0.1 and 30 A g-1 , respectively) and ultra-long cycling life (8000 cycles) are achieved.

4.
Small ; : e2307225, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054760

RESUMEN

Ni/Mn-based oxide cathode materials have drawn great attention due to their high discharge voltage and large capacity, but structural instability at high potential causes rapid capacity decay. How to moderate the capacity loss while maintaining the advantages of high discharge voltage remains challenging. Herein, the replacement of Mn ions by Ga ions is proposed in the P2-Na2/3 Ni0.2 Mn0.8 O2 cathode for improving their cycling performances without sacrificing the high discharge voltage. With the introduction of Ga ions, the relative movement between the transition metal ions is restricted and more Na ions are retained in the lattice at high voltage, leading to an enhanced redox activity of Ni ions, validated by ex situ synchrotron X-ray absorption spectrum and X-ray photoelectron spectroscopy. Additionally, the P2-O2 phase transition is replaced by a P2-OP4 phase transition with a smaller volume change, reducing the lattice strain in the c-axis direction, as detected by operando/ex situ X-ray diffraction. Consequently, the Na2/3 Ni0.21 Mn0.74 Ga0.05 O2 electrode exhibits a high discharge voltage close to that of the undoped materials, while increasing voltage retention from 79% to 93% after 50 cycles. This work offers a new avenue for designing high-energy density Ni/Mn-based oxide cathodes for sodium-ion batteries.

5.
Chem Sci ; 15(1): 349-363, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131072

RESUMEN

Ultrafast-charging is the focus of next-generation rechargeable batteries for widespread economic success by reducing the time cost. However, the poor ion diffusion rate, intrinsic electronic conductivity and structural stability of cathode materials seriously hinder the development of ultrafast-charging technology. To overcome these challenges, an interfacial dynamics and thermodynamics synergistic strategy is proposed to synchronously enhance the fast-charging capability and structural stability of polyanion cathode materials. As a case study, a Na3V2(PO4)3 composite (NVP/NSC) is successfully obtained by introducing an interface layer derived from N/S co-doped carbon dots. Density functional theory calculations validate that the interfacial bonding effect of V-N/S-C significantly reduces the Na+ transport energy barrier. D-band center theory analysis confirms the downward shift of the V d-band center enhances the strength of the V-O bond and considerably inhibits irreversible phase transformation. Benefitting from this interfacial synergistic strategy, NVP/NSC achieves a high capability and excellent cycling stability with a surprisingly low carbon content (2.23%) at an extremely high rate of 100C for 10 000 cycles (87.2 mA h g-1, 0.0028% capacity decay per cycle). Furthermore, a superior performance at 5C (115.3 mA h g-1, 92.1% capacity retention after 800 cycles) is exhibited by the NVP/NSC‖HC full cell. These findings provide timely new insights for the systematic design of ultrafast-charging cathode materials.

6.
Chem Sci ; 14(43): 12194-12204, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969573

RESUMEN

Carbon dots (CDs) have attracted significant attention in the energy, environment, and biology fields due to their exceptional physicochemical properties. However, owing to the multifarious precursors and complex reaction mechanisms, the production of carbon dots from organic molecules is still a mysterious process. Inspired by the color change of sodium hydroxide ethanol solution after standing for some time, in this work, we thoroughly investigated the reaction mechanism from alcohol molecules to carbon dots through a lot of experiments and theoretical calculations, and it was found that the rate-controlling reaction is the formation of aldehydes, and it is also confirmed that there is a self-catalysis reaction, which can accelerate the conversion from alcohol to aldehyde, further facilitating the final formation of CDs. After the rate-controlling reaction of alcohol to aldehyde, under strongly alkaline conditions, an aldol reaction occurs to form unsaturated aldehydes, followed by further condensation and polymerization reactions to form long carbon chains, which are cross-linked and dehydrated to form carbon dots with a carbon core and surface functional groups. Additionally, it is found that the reaction can be largely accelerated with the assistance of electricity, which indicates the great prospect of industrial production. Furthermore, the obtained CDs with rich functional groups can be utilized as electrolyte additives to optimize the deposition behavior of Na metal, manifesting great potential towards safe and stable Na metal batteries.

7.
ACS Nano ; 17(21): 22082-22094, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37916798

RESUMEN

Fluorinated carbon dots (FCDs) have garnered interest owing to their distinct physicochemical properties. Nevertheless, intricate synthesis procedures and quite low fluorine doping levels limit its development and application. Herein, we propose a facile approach based on the Claisen-Schmidt reaction to realize gram-scale synthesis of highly fluorinated carbon dots (up to 20.79 at. %) at room temperature and atmospheric pressure, and a comprehensive exploration of the specific reaction mechanism is conducted. Furthermore, in consideration of the high fluorine content, good dispersibility, and compatibility with polymer electrolyte, the synthesized FCDs are utilized as an additive for PEO-based solid electrolytes of a Li battery to improve its ionic conductivity, interface stability, and mechanical properties. The introduction of FCDs can not only reduce the crystallinity of PEO and enhance the interaction of polymer chains, but also facilitate the establishment of uninterrupted pathways and in situ fluorination at the interface, which is substantiated by both theoretical calculations and experimental findings. As a result, the lithium symmetrical battery can operate stably for 1000 h at a current density of 0.4 mA cm-2. Simultaneously, the LiFePO4/Li battery utilizing the composite electrolyte exhibits a capacity of 130.3 mAh g-1 over 300 cycles while maintaining a capacity retention rate of 95.10%. This study develops a strategy for synthesizing highly fluorinated carbon dots, which demonstrate a useful influence on PEO electrolytes, thus boosting the advancement of FCDs and solid-state batteries.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37921590

RESUMEN

Electric eels generate electricity with a discharge voltage of up to 860 V under ionic gradients, providing a fascinating example to inspire viable and flexible power sources. However, hitherto reported eel-related devices are strictly restricted by complicated fabrication and environmental energy input. Herein, an electric-eel-type bi-ionic gradient battery (BGB) is performed by cationic and anionic polyelectrolyte hydrogels featuring simplified units and self-energy supply. Benefiting from ionic bonds with opposite charges in the polymer chain, bianion gradients as well as ion selective migration pathways are synchronously constructed and integrated units are enabled. As a result, an open-circuit voltage of 0.54 V and a short-circuit current density of 13 µA cm-2 are generated by a BGB unit. Moreover, a voltage output up to 60 V is derived from integrated BGB devices, demonstrating the potential to drive wearable and implantable electronics. In this case, these artificial electric systems could overcome the great challenges of environmentally friendly, biocompatible, low-cost, and soft power sources, providing in-depth insights into the development of clean and sustainable power generation technologies.

9.
ACS Appl Mater Interfaces ; 15(46): 53533-53539, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37938031

RESUMEN

Difluoroethylene carbonate (DFEC) featuring abundant fluorine atoms has been proposed as a multifunctional electrolyte additive to boost the stability of the electrolyte-electrode interphase of lithium metal batteries. Thus, introducing the DFEC additive enables a high capacity retention rate of the Li||NCM811 full cell (up to 75% after 200 cycles) at 4.5 V high voltage.

10.
J Phys Chem Lett ; 14(31): 7045-7052, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37526196

RESUMEN

Although both electromagnetic and charge transfer (CT) mechanisms play a role in surface-enhanced Raman scattering (SERS), the contribution of the latter is limited by poor CT efficiency. Herein, we propose molecular-enhanced Raman spectroscopy (MERS) for the first time and develop a simple strategy to induce strong CT-enhanced Raman signals using a phosphoester (POE) electron-transfer bridge. Consequently, an excellent POE-enhanced Raman effect was found when various mono-, bis-, and trisaminobenzene compounds were used as probe analytes. Quantification analysis of this MERS effect revealed that the enhancement ratio and factor of the POE molecules can be up to 87% and ∼109, respectively. Spectroscopic analysis and density functional theory calculation confirmed that this effect was because of the formation of intermolecular hydrogen bonds, which promotes CT via electronic reorganization and enhances the Raman signals of target analytes. These results demonstrate the feasibility of MERS for highly CT-enhanced Raman signals.

11.
Angew Chem Int Ed Engl ; 62(38): e202309601, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37548132

RESUMEN

High-voltage aqueous rechargeable energy storage devices with safety and high specific energy are hopeful candidates for the future energy storage system. However, the electrochemical stability window of aqueous electrolytes is a great challenge. Herein, inspired by density functional theory (DFT), polyethylene glycol (PEG) can interact strongly with water molecules, effectively reconstructing the hydrogen bond network. In addition, N, N-dimethylformamide (DMF) can coordinate with Zn2+ , assisting in the rapid desolvation of Zn2+ and stable plating/stripping process. Remarkably, by introducing PEG400 and DMF as co-solvents into the electrolyte, a wide electrochemical window of 4.27 V can be achieved. The shift in spectra indicate the transformation in the number and strength of hydrogen bonds, verifying the reconstruction of hydrogen bond network, which can largely inhibit the activity of water molecule, according well with the molecular dynamics simulations (MD) and online electrochemical mass spectroscopy (OEMS). Based on this electrolyte, symmetric Zn cells survived up to 5000 h at 1 mA cm-2 , and high voltage aqueous zinc ion supercapacitors assembled with Zn anode and activated carbon cathode achieved 800 cycles at 0.1 A g-1 . This work provides a feasible approach for constructing high-voltage alkali metal ion supercapacitors through reconstruction strategy of hydrogen bond network.

12.
J Phys Chem Lett ; 14(33): 7445-7453, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37578927

RESUMEN

Improving the performance of quasi-solid-state gel polymer electrolytes is critical for addressing issues at the Zn anode-electrolyte interface of high-performance flexible Zn-air batteries (FZABs). In this study, a highly interconnected porous poly(vinyl alcohol)/poly(ethylene glycol) (PVA/PEG) hydrogel electrolyte was fabricated via an ice-crystal template for FZABs. The mechanical toughness and stability of the gel electrolytes can be reinforced by the formation of a PEG-PVA cross-linking network. The three-dimensional PVA/PEG porous skeleton greatly increased electrolyte uptake and accelerated ion transport, leading to high ionic conductivity (42.5 mS cm-1). In-situ synchrotron radiation X-ray imaging revealed that the PVA/PEG network can effectively inhibit dendrite growth and the hydrogen evolution reaction. The assembled FZABs exhibited superior cycle stability, high power density (109 mW cm-3), and excellent flexibility and structural stability under bending conditions, thus showing great potential for future applications in flexible and wearable electronic device technologies.

13.
Small Methods ; 7(11): e2300635, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572008

RESUMEN

Sodium layered oxides feature in high capacity and diverse composition, however, are plagued by various issues including limited kinetics and interfacial instability with residual alkali. Conventional substitution/doping and heterogeneous coating are promising to tackle the problems of bulk and surface, respectively, but normally insufficient to address both. Herein, a post-substitution strategy is proposed to modify primary sodium-layered-oxide particles that can simultaneously deal with bulk and surficial issues. As a typical example, post Ti-substitution for O3-NaNi1/3 Fe1/3 Mn1/3 O2 is successfully performed by adjusting thermodynamic driving force, resulting in depth-controllable Ti infusion from surface to bulk, as proved by energy dispersive spectroscopy maps collected at the cross-section. Residual alkali species are efficiently diminished and benefited from the surface-to-bulk osmotic reaction, significantly improving Coulombic efficiency. Moreover, remarkable enhancements in reversible capacity (135 mAh g-1 at C/10), rate capability (74% retention at 5 C), and long-term cycling stability (80% retention after 300 cycles at 2 C) are achieved by manipulating gradient-like Ti distribution in a primary particle that brings with increased kinetics and strengthened interfacial stability, surpassing those given by rough heterotic coating and homogeneous Ti-substitution. Such post-substitution is expected to provide a universal strategy to modify primary layered-oxide particles for developing advanced cathode materials of SIBs.

14.
Adv Mater ; 35(38): e2303193, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37267091

RESUMEN

Solid-state batteries can ensure high energy density and safety in lithium metal batteries, while polymer electrolytes are plagued by slow ion kinetics and low selective transport of Li+ . Metal-organic frameworks (MOFs) are proposed as emerging fillers for solid-state poly(ethylene oxide)(PEO) electrolytes, however, developing functionalized MOFs and understanding their roles on ion transfer has proven challenging. Herein, combining computational and experimental results, the functional group regulation in MOFs can effectively change surficial charge distribution and limit anion movement is revealed, providing a potential solution to these issues. Specifically, functionalized 2D MOF sheets are designed through molecular engineering to construct high-performance composite electrolytes, where the electron-donating effect of substituents in 2D-MOFs effectively limits the movement of ClO4 - and promotes mechanical properties and ion migration numbers (0.36 up to 0.64) of PEO. As a result, Li/Li cells with composite electrolyte exhibit superior cyclability for 1000 h at a current density of 0.2 mA cm-2 . Meanwhile, the solid LiFePO4 /Li battery delivers highly reversible capacities of 148.8 mAh g-1 after 200 cycles. These findings highlight a new approach for anion confinement through the use of functional group electronic effects, leading to enhanced ionic conductivity, and a feasible direction for high-performance solid-state batteries.

15.
ACS Nano ; 17(13): 12530-12543, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37382902

RESUMEN

Sodium layered oxides always suffer from sluggish kinetics and deleterious phase transformations at deep-desodiation state (i.e., >4.0 V) in O3 structure, incurring inferior rate capability and grievous capacity degradation. To tackle these handicaps, here, a configurational entropy tuning protocol through manipulating the stoichiometric ratios of inactive cations is proposed to elaborately design Na-deficient, O3-type NaxTmO2 cathodes. It is found that the electrons surrounding the oxygen of the TmO6 octahedron are rearranged by the introduction of MnO6 and TiO6 octahedra in Na-deficient O3-type Na0.83Li0.1Ni0.25Co0.2Mn0.15Ti0.15Sn0.15O2-δ (MTS15) with expanded O-Na-O slab spacing, giving enhanced Na+ diffusion kinetics and structural stability, as disclosed by theoretical calculations and electrochemical measurements. Concomitantly, the entropy effect contributes to the improved reversibility of Co redox and phase-transition behaviors between O3 and P3, as clearly revealed by ex situ synchrotron X-ray absorption spectra and in situ X-ray diffraction. Notably, the prepared entropy-tuned MTS15 cathode exhibits impressive rate capability (76.7% capacity retention at 10 C), cycling stability (87.2% capacity retention after 200 cycles) with a reversible capacity of 109.4 mAh g-1, good full-cell performance (84.3% capacity retention after 100 cycles), and exceptional air stability. This work provides an idea for how to design high-entropy sodium layered oxides for high-power density storage systems.

16.
ACS Nano ; 17(13): 12759-12773, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350442

RESUMEN

Further popularization of ultrahigh-Ni layered cathodes for high-energy lithium-ion batteries (LIBs) is hampered by their grievous structural and interfacial degeneration upon cycling. Herein, by leveraging the strong electronegativity and low solubility properties of Sb element, a multifunctional modification that couples atomic/microstructural reconstruction with interfacial shielding is well designed to improve the LiNi0.94Co0.04Al0.02O2 (NCA) cathode by combining Sb5+ doping and Li7SbO6 coating. Notably, a robust O framework is established by regulating local O coordination owing to the incorporation of a strong Sb-O covalence bond, leading to the inhibited lattice O evolution at high voltage, as revealed by synchrotron X-ray absorption spectroscopy. Moreover, the radially aligned primary particles with (003) crystallographic texture and refined/elongated sizes are achieved by the pinning of Sb on grain boundaries and are confirmed by scanning transmission electron microscopy, resulting in the fast Li+ diffusion and mitigated particle cracking. Additionally, in situ construction of the Li7SbO6 ionic conductive layer on grain boundaries can effectively boost interfacial stability and Li+ kinetics. As a result, the optimal Sb-modified NCA delivers a high capacity retention of 94.6% after 200 cycles at 1 C and a good rate capacity of 183.9 mAh g-1 at 10 C, which is expected to be applied to next-generation advanced LIBs.

17.
Small ; 19(41): e2300256, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37330644

RESUMEN

The high-throughput scalable production of low-cost and high-performance electrode materials that work well under high power densities required in industrial application is full of challenges for the large-scale implementation of electrochemical technologies. Here, motivated by theoretical calculation that Mo-S-C heterojunction and sulfur vacancies can reduce the energy band gap, decrease the migration energy barrier, and improve the mechanical stability of MoS2 , the scalable preparation of inexpensive MoS2-x @CN is contrived by employing natural molybdenite as precursor, which is characteristic of high efficiency in synthesis process and energy conservation and the calculated costs are four orders of magnitude lower than MoS2 /C in previous work. More importantly, MoS2- x @CN electrode is endowed with impressive rate capability even at 5 A g-1 , and ultrastable cycling stability during almost 5000 cycles, which far outperform chemosynthesis MoS2 materials. Obtaining the full SIC cell assembled by MoS2- x @CN anode and carbon cathode, the energy/power output is high up to 265.3 W h kg-1 at 250 W kg-1 . These advantages indicate the huge potentials of the designed MoS2- x @CN and of mineral-based cost-effective and abundant resources as anode materials in high-performance AICs.

18.
Inorg Chem ; 62(23): 9099-9110, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37227733

RESUMEN

Na4Fe3(PO4)2(P2O7) (NFPP) is an attractive candidate for Na+ batteries (SIBs) and Li+ batteries (LIBs). However, the real implementation of NFPP has been critically restrained by the inferior intrinsic electronic conductivity. Herein, in situ carbon-coated mesoporous NFPP, obtained via freeze drying and heat treatment, demonstrates highly reversible insertion/extraction of Na+/Li+. Mechanically, the electronic transmission and structural stabilities of NFPP are significantly enhanced by the graphitized carbon coating layer. Chemically, the porous nanosized structure shortens Na+/Li+ diffusion paths and increases the contact area between the electrolyte and NFPP, ultimately rendering fast ion diffusion. Greatly, long-lasting cyclability (88.5% capacity retention for over 5000 cycles), decent thermal stability at 60 °C, and impressive electrochemical performances are demonstrated in LIBs. The insertion/extraction mechanisms of NFPP in both SIBs and LIBs are systematically investigated, confirming its small volume expansion and high reversibility. The superior electrochemical performances and the insertion/extraction mechanism investigation confirm the feasibility of utilizing NFPP as a cathode material for Na+/Li+ batteries.

19.
Small ; 19(39): e2303268, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37226370

RESUMEN

Rechargeable aqueous zinc-ion batteries (AZIBs) are among the most promising candidates for next-generation energy-storage devices. However, the large voltage polarisation and infamous dendrite growth hinder the practical application of AZIBs owing to their complex interfacial electrochemical environment. In this study, a hydrophobic zinc chelate-capped nano-silver (HZC-Ag) dual interphase is fabricated on the zinc anode surface using an emulsion-replacement strategy. The multifunctional HZC-Ag layer remodels the local electrochemical environment by facilitating the pre-enrichment and de-solvation of zinc ions and inducing homogeneous zinc nucleation, thus resulting in reversible dendrite-free zinc anodes. The zinc deposition mechanism on the HZC-Ag interphase is elucidated by density functional theory (DFT) calculations, dual-field simulations, and in situ synchrotron X-ray radiation imaging. The HZC-Ag@Zn anode exhibited superior dendrite-free zinc stripping/plating performance and an excellent lifespan of >2000 h with ultra-low polarisation of ≈17 mV at 0.5 mA cm-2 . Full cells coupled with a MnO2 cathode showed significant self-discharge inhibition, excellent rate performance, and improved cycling stability for >1000 cycles. Therefore, this multifunctional dual interphase may contribute to the design and development of dendrite-free anodes for high-performance aqueous metal-based batteries.

20.
Small ; 19(33): e2301275, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37081376

RESUMEN

Solid-state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+ , GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid-state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA