Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38278206

RESUMEN

To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2-), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2-, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2- and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.


Asunto(s)
Braquiuros , Peróxido de Hidrógeno , Animales , Peróxido de Hidrógeno/farmacología , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Antibacterianos/farmacología , Proteínas Recombinantes/genética , Bacterias/metabolismo , Braquiuros/genética , Inmunidad Innata , Filogenia , Proteínas de Artrópodos/genética , Hemocitos/metabolismo
2.
J Aquat Anim Health ; 35(2): 117-127, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37334434

RESUMEN

OBJECTIVE: In 2021, an outbreak of an infectious disease characterized by torticollis, cataracts, and neurological disorders caused massive mortality in farmed American bullfrogs Rana catesbeiana in Hubei province, China. We identified the causal agent in this outbreak, characterized its pathogenicity, and screened candidate antimicrobial agents for future disease control. METHODS: Bacterium was isolated from the diseased American bullfrogs and identified based on biochemical tests, sequence analyses (16S ribosomal RNA; DNA gyrase subunit B), and experimental challenge. Furthermore, antibiotic sensitivity of the isolated strain was detected with Kirby-Bauer paper diffusion method, and the antibacterial activity of 60 traditional Chinese herbal extracts against the isolated strain was evaluated by agar disc diffusion and broth dilution assays. RESULT: We identified Elizabathkingia miricola strain FB210601 as the causative agent of this disease. The isolated E. miricola strain FB210601 exhibited extensive antibiotic resistance to all tested quinolones, ß-lactam antibiotics, and aminoglycosides. Eight herbal extracts exhibited excellent antimicrobial activity against E. miricola FB210601, especially Caesalpinia sappan and Rhus chinensis, with minimal inhibitory concentrations less than 0.2 mg/mL. Additionally, the combined effects of two-component herbal mixtures containing C. sappan or R. chinensis were greater than those of the individual extracts. CONCLUSION: Our results provide a reference for understanding the pathogenesis of Elizabethkingia infection in frogs. Furthermore, this study will aid in the application of herbal extracts for protection against infections caused by multidrug-resistant Elizabathkingia in the future.


Asunto(s)
Antibacterianos , Infecciones por Flavobacteriaceae , Flavobacteriaceae , Rana catesbeiana , Animales , Antibacterianos/farmacología , China/epidemiología , Rana catesbeiana/microbiología , Análisis de Secuencia de ADN/veterinaria , Virulencia
3.
Org Biomol Chem ; 19(8): 1787-1794, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33555276

RESUMEN

A general and practical regioselective approach for the C-H amination of 2H-indazoles under transition-metal-free conditions was developed. A series of substrates were tested showing eminent functional group tolerance and affording the C-N functionalization products in good to excellent yields. Mechanism studies revealed that a radical process was involved in this transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...