Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 9(95): eadi5374, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758808

RESUMEN

The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.


Asunto(s)
Microbioma Gastrointestinal , Inmunoterapia , Macrófagos , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Receptores Inmunológicos , Animales , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Ratones , Microbioma Gastrointestinal/inmunología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Macrófagos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones Noqueados , Femenino , Intestinos/inmunología
2.
Immunity ; 57(6): 1394-1412.e8, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38821054

RESUMEN

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative-region-associated microglia (PAMs) in developing white matter and disease-associated microglia (DAMs) prevalent in various neurodegenerative conditions. PAMs and DAMs share a similar core gene signature. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we generated an inducible Cre driver line, Clec7a-CreERT2, that targets PAMs and DAMs in the brain parenchyma. Utilizing this tool, we profiled labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM and DAM gene expression. Through long-term tracking, we demonstrated microglial state plasticity. Lastly, we specifically depleted DAMs in demyelination, revealing their roles in disease recovery. Together, we provide a versatile genetic tool to characterize microglial states in CNS development and disease.


Asunto(s)
Plasticidad de la Célula , Microglía , Remielinización , Microglía/fisiología , Animales , Ratones , Plasticidad de la Célula/genética , Enfermedades Desmielinizantes/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales de Enfermedad , Encéfalo , Vaina de Mielina/metabolismo , Sustancia Blanca/patología
3.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569016

RESUMEN

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Ratones , Animales , Microglía/metabolismo , Anticuerpos/metabolismo , Receptores de Superficie Celular/metabolismo , Amiloide/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E , Leucocitos/metabolismo , Ratones Transgénicos , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
4.
J Exp Med ; 221(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38289348

RESUMEN

Outer retinal degenerations, including age-related macular degeneration (AMD), are characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. In these blinding diseases, macrophages accumulate at atrophic sites, but their ontogeny and niche specialization remain poorly understood, especially in humans. We uncovered a unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and human AMD. In disease models, conditional deletion of galectin-3 in microglia led to phagocytosis defects and consequent augmented photoreceptor death, RPE damage, and vision loss, indicating protective roles. Mechanistically, Trem2 signaling orchestrated microglial migration to atrophic sites and induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection but in a galectin-3-dependent manner. In elderly human subjects, we identified this highly conserved microglial population that expressed galectin-3 and Trem2. This population was significantly enriched in the macular RPE-choroid of AMD subjects. Collectively, our findings reveal a neuroprotective population of microglia and a potential therapeutic target for mitigating retinal degeneration.


Asunto(s)
Galectina 3 , Glicoproteínas de Membrana , Receptores Inmunológicos , Degeneración Retiniana , Anciano , Animales , Humanos , Ratones , Atrofia , Galectina 3/genética , Macrófagos , Glicoproteínas de Membrana/genética , Microglía , Receptores Inmunológicos/genética
5.
Cell ; 187(1): 149-165.e23, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38134933

RESUMEN

Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.


Asunto(s)
Glioblastoma , Humanos , Perfilación de la Expresión Génica , Glioblastoma/patología , Inmunoterapia , Células Asesinas Naturales , Macrófagos , Microambiente Tumoral , Análisis de la Célula Individual
6.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38106187

RESUMEN

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative region-associated microglia (PAM) in developing white matter and disease-associated microglia (DAM) prevalent in various neurodegenerative conditions. PAM and DAM share a similar core gene signature and other functional properties. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we report the generation of an inducible Cre driver line, Clec7a-CreERT2, designed to target PAM and DAM in the brain parenchyma. Utilizing this tool, we profile labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM/DAM gene expression. Through long-term tracking, we demonstrate surprising levels of plasticity in these microglial states. Lastly, we specifically depleted DAM in cuprizone-induced demyelination, revealing their roles in disease progression and recovery.

7.
Nat Commun ; 14(1): 2685, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37164949

RESUMEN

Cancer immunotherapies have revolutionized treatment but have shown limited success as single-agent therapies highlighting the need to understand the origin, assembly, and dynamics of heterogeneous tumor immune niches. Here, we use single-cell and imaging-based spatial analysis to elucidate three microenvironmental neighborhoods surrounding the heterogeneous basal cell carcinoma tumor epithelia. Within the highly proliferative neighborhood, we find that TREM2+ skin cancer-associated macrophages (SCAMs) support the proliferation of a distinct tumor epithelial population through an immunosuppression-independent manner via oncostatin-M/JAK-STAT3 signaling. SCAMs represent a unique tumor-specific TREM2+ population defined by VCAM1 surface expression that is not found in normal homeostatic skin or during wound healing. Furthermore, SCAMs actively proliferate and self-propagate through multiple serial tumor passages, indicating long-term potential. The tumor rapidly drives SCAM differentiation, with intratumoral injections sufficient to instruct naive bone marrow-derived monocytes to polarize within days. This work provides mechanistic insights into direct tumor-immune niche dynamics independent of immunosuppression, providing the basis for potential combination tumor therapies.


Asunto(s)
Carcinoma Basocelular , Neoplasias Cutáneas , Humanos , Macrófagos/metabolismo , Monocitos , Carcinogénesis/metabolismo , Carcinoma Basocelular/metabolismo , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
8.
Sci Adv ; 9(19): eade3559, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37172094

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) plays important roles in brain microglial function in neurodegenerative diseases, but the role of TREM2 in the GBM TME has not been examined. Here, we found that TREM2 is highly expressed in myeloid subsets, including macrophages and microglia in human and mouse GBM tumors and that high TREM2 expression correlates with poor prognosis in patients with GBM. TREM2 loss of function in human macrophages and mouse myeloid cells increased interferon-γ-induced immunoactivation, proinflammatory polarization, and tumoricidal capacity. In orthotopic mouse GBM models, mice with chronic and acute Trem2 loss of function exhibited decreased tumor growth and increased survival. Trem2 inhibition reprogrammed myeloid phenotypes and increased programmed cell death protein 1 (PD-1)+CD8+ T cells in the TME. Last, Trem2 deficiency enhanced the effectiveness of anti-PD-1 treatment, which may represent a therapeutic strategy for patients with GBM.


Asunto(s)
Glioblastoma , Humanos , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Linfocitos T CD8-positivos , Microglía/metabolismo , Macrófagos , Células Mieloides/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
9.
Nat Immunol ; 24(5): 792-801, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081148

RESUMEN

Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.


Asunto(s)
Células Asesinas Naturales , Neoplasias Pulmonares , Humanos , Ratones , Animales , Macrófagos , Células Mieloides , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
10.
Cell Rep ; 42(4): 112293, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36952346

RESUMEN

Demyelination is a hallmark of multiple sclerosis, leukoencephalopathies, cerebral vasculopathies, and several neurodegenerative diseases. The cuprizone mouse model is widely used to simulate demyelination and remyelination occurring in these diseases. Here, we present a high-resolution single-nucleus RNA sequencing (snRNA-seq) analysis of gene expression changes across all brain cells in this model. We define demyelination-associated oligodendrocytes (DOLs) and remyelination-associated MAFBhi microglia, as well as astrocytes and vascular cells with signatures of altered metabolism, oxidative stress, and interferon response. Furthermore, snRNA-seq provides insights into how brain cell types connect and interact, defining complex circuitries that impact demyelination and remyelination. As an explicative example, perturbation of microglia caused by TREM2 deficiency indirectly impairs the induction of DOLs. Altogether, this study provides a rich resource for future studies investigating mechanisms underlying demyelinating diseases.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Animales , Ratones , Enfermedades Desmielinizantes/metabolismo , Transcriptoma/genética , Encéfalo/metabolismo , Oligodendroglía/metabolismo , Microglía/metabolismo , Cuprizona/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo
11.
Mol Neurodegener ; 17(1): 84, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564824

RESUMEN

Microglia are central players in brain innate immunity and have been the subject of extensive research in Alzheimer's disease (AD). In this review, we aim to summarize the genetic and functional discoveries that have advanced our understanding of microglia reactivity to AD pathology. Given the heightened AD risk posed by rare variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2), we will focus on the studies addressing the impact of this receptor on microglia responses to amyloid plaques, tauopathy and demyelination pathologies in mouse and human. Finally, we will discuss the implications of recent discoveries on microglia and TREM2 biology on potential therapeutic strategies for AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Ratones , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Inmunidad Innata , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
12.
Cell ; 185(22): 4153-4169.e19, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36306735

RESUMEN

Genetic studies have highlighted microglia as pivotal in orchestrating Alzheimer's disease (AD). Microglia that adhere to Aß plaques acquire a transcriptional signature, "disease-associated microglia" (DAM), which largely emanates from the TREM2-DAP12 receptor complex that transmits intracellular signals through the protein tyrosine kinase SYK. The human TREM2R47H variant associated with high AD risk fails to activate microglia via SYK. We found that SYK-deficient microglia cannot encase Aß plaques, accelerating brain pathology and behavioral deficits. SYK deficiency impaired the PI3K-AKT-GSK-3ß-mTOR pathway, incapacitating anabolic support required for attaining the DAM profile. However, SYK-deficient microglia proliferated and advanced to an Apoe-expressing prodromal stage of DAM; this pathway relied on the adapter DAP10, which also binds TREM2. Thus, microglial responses to Aß involve non-redundant SYK- and DAP10-pathways. Systemic administration of an antibody against CLEC7A, a receptor that directly activates SYK, rescued microglia activation in mice expressing the TREM2R47H allele, unveiling new options for AD immunotherapy.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Animales , Ratones , Humanos , Microglía/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Quinasa Syk/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
13.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586673

RESUMEN

Sepsis is a leading cause of death in critical illness, and its pathophysiology varies depending on preexisting medical conditions. Here we identified nonalcoholic fatty liver disease (NAFLD) as an independent risk factor for sepsis in a large clinical cohort and showed a link between mortality in NAFLD-associated sepsis and hepatic mitochondrial and energetic metabolism dysfunction. Using in vivo and in vitro models of liver lipid overload, we discovered a metabolic coordination between hepatocyte mitochondria and liver macrophages that express triggering receptor expressed on myeloid cells-2 (TREM2). Trem2-deficient macrophages released exosomes that impaired hepatocytic mitochondrial structure and energy supply because of their high content of miR-106b-5p, which blocks Mitofusin 2 (Mfn2). In a mouse model of NAFLD-associated sepsis, TREM2 deficiency accelerated the initial progression of NAFLD and subsequent susceptibility to sepsis. Conversely, overexpression of TREM2 in liver macrophages improved hepatic energy supply and sepsis outcome. This study demonstrates that NAFLD is a risk factor for sepsis, providing a basis for precision treatment, and identifies hepatocyte-macrophage metabolic coordination and TREM2 as potential targets for future clinical trials.


Asunto(s)
Comunicación Celular , Hepatocitos/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Inmunológicos/metabolismo , Sepsis/metabolismo , Animales , Metabolismo Energético/genética , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Hepatocitos/patología , Humanos , Macrófagos/patología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores Inmunológicos/genética , Sepsis/genética , Sepsis/patología
14.
Cell ; 182(4): 886-900.e17, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32783918

RESUMEN

Checkpoint immunotherapy unleashes T cell control of tumors, but is undermined by immunosuppressive myeloid cells. TREM2 is a myeloid receptor that transmits intracellular signals that sustain microglial responses during Alzheimer's disease. TREM2 is also expressed by tumor-infiltrating macrophages. Here, we found that Trem2-/- mice are more resistant to growth of various cancers than wild-type mice and are more responsive to anti-PD-1 immunotherapy. Furthermore, treatment with anti-TREM2 mAb curbed tumor growth and fostered regression when combined with anti-PD-1. scRNA-seq revealed that both TREM2 deletion and anti-TREM2 are associated with scant MRC1+ and CX3CR1+ macrophages in the tumor infiltrate, paralleled by expansion of myeloid subsets expressing immunostimulatory molecules that promote improved T cell responses. TREM2 was expressed in tumor macrophages in over 200 human cancer cases and inversely correlated with prolonged survival for two types of cancer. Thus, TREM2 might be targeted to modify tumor myeloid infiltrates and augment checkpoint immunotherapy.


Asunto(s)
Inmunoterapia , Glicoproteínas de Membrana/metabolismo , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/inmunología , Receptores Inmunológicos/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Receptor 1 de Quimiocinas CX3C/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/metabolismo , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Metilcolantreno/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/inducido químicamente , Neoplasias/patología , Pronóstico , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Microambiente Tumoral
15.
Thorax ; 75(3): 209-219, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31937554

RESUMEN

BACKGROUND: Type 2 immune dysfunction contributes to acute lung injury and lethality following haemorrhagic shock (HS) and trauma. Group 2 innate lymphoid cells (ILC2s) play a significant role in the regulation of type 2 immune responses. However, the role of ILC2 in post-HS acute lung injury and the underlying mechanism has not yet been elucidated. OBJECTIVE: To investigate the regulatory role of ILC2s in HS-induced acute lung injury and the underlying mechanism in patients and animal model. METHODS: Circulating markers of type 2 immune responses in patients with HS and healthy controls were characterised. Using a murine model of HS, the role of high-mobility group box 1 (HMGB1)-receptor for advanced glycation end products (RAGE) signalling in regulation of ILC2 proliferation, survival and function was determined. And the role of ILC2 in inducing type 2 immune dysfunction was assessed as well. RESULTS: The number of ILC2s was significantly increased in the circulation of patients with HS that was correlated with the increase in the markers of type 2 immune responses in the patients. Animal studies showed that HMGB1 acted via RAGE to induce ILC2 accumulation in the lungs by promoting ILC2 proliferation and decreasing ILC2 death. The expansion of ILC2s resulted in type 2 cytokines secretion and eosinophil infiltration in the lungs, both of which contributed to lung injury after HS. CONCLUSIONS: These results indicate that HMGB1-RAGE signalling plays a critical role in regulating ILC2 biological function that aggravates type 2 lung inflammation following HS.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Proteína HMGB1/metabolismo , Inmunidad Innata/inmunología , Interleucinas/metabolismo , Linfocitos/inmunología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Choque Hemorrágico/sangre , Lesión Pulmonar Aguda/patología , Animales , Antígenos de Neoplasias/sangre , Estudios de Casos y Controles , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Eosinófilos , Femenino , Proteína HMGB1/sangre , Proteína HMGB1/genética , Humanos , Interleucinas/sangre , Recuento de Linfocitos , Linfocitos/fisiología , Masculino , Ratones , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/sangre , Receptor para Productos Finales de Glicación Avanzada/genética , Choque Hemorrágico/complicaciones , Transducción de Señal
16.
J Transl Med ; 17(1): 300, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477129

RESUMEN

BACKGROUND: Adipose tissue remodeling plays a significant role in obesity-induced insulin resistance. Published studies reported that level of trigger receptor expressed on myeloid cells 2 (TREM2) in adipose tissue is up-regulated in animal models of obesity. This study aims to investigate whether TREM2 regulates obesity-induced insulin resistance via modulating adipose tissue remodeling in mice of high-fat diet (HFD). METHODS: Wild-type (WT) and TREM2-/- mice were both fed with a controlled-fat diet (CFD) or HFD for 12 weeks and studied for obesity and insulin resistance. Meanwhile, epididymal adipose tissue (EAT) was examined for morphological and pathological changes to determine adipose tissue remodeling. After that, adipocyte-derived MCP-1 was measured in adipocytes, adipose tissue and circulation. Next, inflammatory cytokines were determined in adipose tissue macrophages (ATM). At last, livers were analyzed for hepatic steatosis. RESULTS: TREM2-/- mice on HFD had increased obesity and insulin resistance compared with WT counterparts. Adipose tissue from TREM2-/- mice exhibited reduced mass but greater adipocyte hypertrophy and increased adipocyte death. Besides, adipocyte-derived MCP-1 was down-regulated in TREM2-/- mice, and circulating MCP-1 level was lower than that of WT mice. Furthermore, TREM2-/- mice displayed reduced infiltration of F4/80+CD11c+ macrophages into adipose tissue, which was unable to form crown-like structures (CLS) to clean dead adipocytes and cellular contents. Also, TREM2 deficiency augmented inflammatory response of adipose tissue macrophages in HFD mice. In addition, TREM2-/- mice demonstrated more severe hepatic steatosis than WT counterparts under HFD feeding. CONCLUSIONS: Trigger receptor expressed on myeloid cells 2 may function as a feedback mechanism to curb obesity-induced insulin resistance via regulating adipose tissue remodeling.


Asunto(s)
Tejido Adiposo/patología , Dieta Alta en Grasa , Conducta Alimentaria , Resistencia a la Insulina , Glicoproteínas de Membrana/metabolismo , Obesidad/patología , Receptores Inmunológicos/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Animales , Quimiocina CCL2/metabolismo , Regulación hacia Abajo , Hipertrofia , Inflamación/patología , Cirrosis Hepática/patología , Macrófagos/patología , Glicoproteínas de Membrana/deficiencia , Ratones Endogámicos C57BL , Receptores Inmunológicos/deficiencia , Regulación hacia Arriba
17.
Proc Natl Acad Sci U S A ; 116(8): 3161-3170, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718392

RESUMEN

Sepsis claims an estimated 30 million episodes and 6 million deaths per year, and treatment options are rather limited. Human neutrophil peptides 1-3 (HNP1-3) are the most abundant neutrophil granule proteins but their neutrophil content varies because of unusually extensive gene copy number polymorphism. A genetic association study found that increased copy number of the HNP-encoding gene DEFA1/DEFA3 is a risk factor for organ dysfunction during sepsis development. However, direct experimental evidence demonstrating that these risk alleles are pathogenic for sepsis is lacking because the genes are present only in some primates and humans. Here, we generate DEFA1/DEFA3 transgenic mice with neutrophil-specific expression of the peptides. We show that mice with high copy number of DEFA1/DEFA3 genes have more severe sepsis-related vital organ damage and mortality than mice with low copy number of DEFA1/DEFA3 or wild-type mice, resulting from more severe endothelial barrier dysfunction and endothelial cell pyroptosis after sepsis challenge. Mechanistically, HNP-1 induces endothelial cell pyroptosis via P2X7 receptor-mediating canonical caspase-1 activation in a NLRP3 inflammasome-dependent manner. Based on these findings, we engineered a monoclonal antibody against HNP-1 to block the interaction with P2X7 and found that the blocking antibody protected mice carrying high copy number of DEFA1/DEFA3 from lethal sepsis. We thus demonstrate that DEFA1/DEFA3 copy number variation strongly modulates sepsis development in vivo and explore a paradigm for the precision treatment of sepsis tailored by individual genetic information.


Asunto(s)
Predisposición Genética a la Enfermedad , Sepsis/genética , alfa-Defensinas/genética , Alelos , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Ratones , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis/genética , Piroptosis/inmunología , Receptores Purinérgicos P2X7/genética , Factores de Riesgo , Sepsis/sangre , Sepsis/patología , alfa-Defensinas/antagonistas & inhibidores , alfa-Defensinas/inmunología
18.
Turk J Med Sci ; 49(1): 412-421, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30761838

RESUMEN

Background/aim: Sphingosine 1-phosphate receptor 2 (S1PR2), a member of the seven-transmembrane receptor family, can be activated by its natural ligand sphingosine 1-phosphate (S1P) to initiate signal transduction and is involved in a wide range of biological effects such as immune cell migration and vascular permeability. Its relationship with neuropathic pain (NP) has not been reported. In this study, the effects of S1PR2 on the development of NP were studied. Materials and methods: We generated a model of NP by partial sciatic nerve ligation (pSNL). The 50% paw withdrawal threshold of the wild-type (WT) group and the S1PR2 deficiency group were measured at several time points after surgery. The inflammatory factor levels of the two groups were measured by real-time quantitative polymerase chain reaction (RT-PCR). Neutrophil infiltration and glial cell activation were detected by immunofluorescence. Matrix metalloproteinase 9 (MMP9) and its substrate myelin basic protein (MBP) were measured by RT-PCR, western blotting, and immunofluorescence. Result: The S1PR2 deficiency group showed a reduction in 50% paw withdrawal threshold compared with WT mice (P < 0.05) at 3 days after the operation. In the ligated sciatic nerve of the S1PR2 deficiency group, the mRNA expression of IL-1ß was increased; the numbers of infiltrating neutrophils and activated astrocytes were also increased. The expression of MMP9 was elevated while MBP was decreased. Conclusion: S1PR2 deficiency could increase the pain sensitivity of a NP mouse model and promote the development of NP


Asunto(s)
Neuralgia/metabolismo , Receptores de Lisoesfingolípidos/deficiencia , Receptores de Lisoesfingolípidos/genética , Nervio Ciático/lesiones , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/genética , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato , Médula Espinal/química
19.
Shock ; 51(6): 787-794, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29846361

RESUMEN

BACKGROUND: Bacterial pneumonia is one of the most common diagnoses and a leading cause of death in the intensive care unit. NR4A1 is an early response gene that has been identified as a vital regulator of immune and inflammatory responses. This study aims to explore the role of NR4A1 in Escherichia coli (E. coli) pneumonia. METHODS: Alveolar macrophages (AMs) were isolated from wild-type (WT) and NR4A1 knock out (Nr4a1) mice, and the NR4A1 expression and phagocytic capacity against E. coli were measured in vitro. WT and Nr4a1 mice were subjected to E. coli or sham pneumonia. Bacterial load, lung injury severity, inflammatory cell infiltration, and cytokines were assessed at 0, 4, and 18 h after surgery. Survival rates within 48 h were evaluated in WT and Nr4a1 mice. In addition, NR4A1 antagonist (DIM-C-pPhCO2Me) was also used to confirm the role of NR4A1 in vivo and ex vivo. RESULTS: NR4A1 was rapidly induced in AMs at 15 min after E. coli stimulation. Compared with untreated WT AMs, NR4A1 deficiency and DIM-C-pPhCO2Me treatment showed an enhanced phagocytic function (47.72 ±â€Š0.74% vs. 62.3 ±â€Š0.9%, P < 0.001; 11.79 ±â€Š1.21% vs. 30.08 ±â€Š0.79%, P < 0.001, respectively) at 30 min after the E. coli challenge in vitro. NR4A1 deficiency significantly improved the survival rate (33.3% in WT vs. 82.4% in Nr4a1, P < 0.01), which is comparable with DIM-C-pPhCO2Me pretreatment. The survival advantage of Nr4a1 mice was associated with decreased bacterial burden and inflammation and alleviated lung damage. CONCLUSIONS: These data demonstrate that NR4A1 impairs the phagocytic capacity of AMs and disrupts the host defense against invading bacteria, worsening the outcome of E. coli pneumonia in mice.


Asunto(s)
Infecciones por Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lesión Pulmonar/metabolismo , Macrófagos Alveolares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Neumonía Bacteriana/metabolismo , Animales , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/patología , Lesión Pulmonar/genética , Lesión Pulmonar/microbiología , Lesión Pulmonar/patología , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/patología , Masculino , Ratones , Ratones Noqueados , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Neumonía Bacteriana/genética , Neumonía Bacteriana/patología
20.
Shock ; 51(6): 718-724, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30080743

RESUMEN

INTRODUCTION: The aim of this study was to investigate the correlation between plasma sphingosine-1-phosphate (S1P) and ceramide concentrations in sepsis, and the possible mechanisms for altered expression. METHODS: Plasma S1P and ceramide concentrations were measured by HPLC-ESI-MS/MS. HLA-DR (human leukocyte antigen-DR) expression on peripheral blood mononuclear cells was examined by flow cytometry. Platelet sphingosine kinases 1/2 (SphK1/2) mRNA expression, protein content, and enzyme activities were determined by qRT-PCR, western blot, and commercial enzyme assay kits, respectively. RESULTS: Compared with healthy and ICU controls, septic patients had significantly decreased plasma S1P but increased ceramide concentrations (P < 0.05). S1P concentration was negatively associated with the ceramide concentration in the septic patients (r = -0.36, P < 0.05). Linear regression analysis found that plasma S1P and ceramide were linked not only to sequential (sepsis-related) organ failure assessment (SOFA) score but also the HLA-DR expression on circulating monocytes. An receiver operating characteristic analysis, including S1P, ceramide, SOFA score and HLA-DR, showed integrated analysis of S1P and ceramide as the better powerful predictors of septic lethality with area under the curve value of 0.95. More importantly, we found the platelet SphKs activities and the expression levels of SphK1 were significantly decreased in septic patients (P < 0.05). Linear regression analysis revealed platelet SphKs activity was positively associated with the plasma S1P concentration of the septic patients (r = -0.41, P = 0.02). CONCLUSIONS: Integrated analysis of plasma S1P and ceramide predict septic mortality with high accuracy. The decreased platelet SphK1 expression and subsequent reduced SphKs activity might be responsible for the decreased plasma S1P levels during sepsis.


Asunto(s)
Ceramidas/sangre , Lisofosfolípidos/sangre , Sepsis/sangre , Sepsis/mortalidad , Esfingosina/análogos & derivados , Adulto , Anciano , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Esfingosina/sangre , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...