Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160244

RESUMEN

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease characterized by unremitting pulmonary myofibroblasts activation, extracellular matrix (ECM) deposition and inflammatory recruitment. PF has no curable medication yet. In this study we investigated the molecular pathogenesis and potential therapeutic targets of PF and discovered drug lead compounds for PF therapy. A murine PF model was established in mice by intratracheal instillation of bleomycin (BLM, 5 mg/kg). We showed that the protein level of pulmonary protein phosphatase magnesium-dependent 1A (PPM1A, also known as PP2Cα) was significantly downregulated in PF patients and BLM-induced PF mice. We demonstrated that TRIM47 promoted ubiquitination and decreased PPM1A protein in PF progression. By screening the lab in-house compound library, we discovered otilonium bromide (OB, clinically used for treating irritable bowel syndrome) as a PPM1A enzymatic activator with an EC50 value of 4.23 µM. Treatment with OB (2.5, 5 mg·kg-1·d-1, i.p., for 20 days) significantly ameliorated PF-like pathology in mice. We constructed PF mice with PPM1A-specific knockdown in the lung tissues, and determined that by targeting PPM1A, OB treatment suppressed ECM deposition through TGF-ß/SMAD3 pathway in fibroblasts, repressed inflammatory responses through NF-κB/NLRP3 pathway in alveolar epithelial cells, and blunted the crosstalk between inflammation in alveolar epithelial cells and ECM deposition in fibroblasts. Together, our results demonstrate that pulmonary PPM1A activation is a promising therapeutic strategy for PF and highlighted the potential of OB in the treatment of the disease.

2.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39062997

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a long-term condition with an unidentified cause, and currently there are no specific treatment options available. Alveolar epithelial type II cells (AT2) constitute a heterogeneous population crucial for secreting and regenerative functions in the alveolus, essential for maintaining lung homeostasis. However, a comprehensive investigation into their cellular diversity, molecular features, and clinical implications is currently lacking. In this study, we conducted a comprehensive examination of single-cell RNA sequencing data from both normal and fibrotic lung tissues. We analyzed alterations in cellular composition between IPF and normal tissue and investigated differentially expressed genes across each cell population. This analysis revealed the presence of two distinct subpopulations of IPF-related alveolar epithelial type II cells (IR_AT2). Subsequently, three unique gene co-expression modules associated with the IR_AT2 subtype were identified through the use of hdWGCNA. Furthermore, we refined and identified IPF-related AT2-related gene (IARG) signatures using various machine learning algorithms. Our analysis demonstrated a significant association between high IARG scores in IPF patients and shorter survival times (p-value < 0.01). Additionally, we observed a negative correlation between the percent predicted diffusing capacity for lung carbon monoxide (% DLCO) and increased IARG scores (cor = -0.44, p-value < 0.05). The cross-validation findings demonstrated a high level of accuracy (AUC > 0.85, p-value < 0.01) in the prognostication of patients with IPF utilizing the identified IARG signatures. Our study has identified distinct molecular and biological features among AT2 subpopulations, specifically highlighting the unique characteristics of IPF-related AT2 cells. Importantly, our findings underscore the prognostic relevance of specific genes associated with IPF-related AT2 cells, offering valuable insights into the advancement of IPF.


Asunto(s)
Células Epiteliales Alveolares , Biomarcadores , Fibrosis Pulmonar Idiopática , Aprendizaje Automático , Análisis de la Célula Individual , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/patología , Análisis de la Célula Individual/métodos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Perfilación de la Expresión Génica , Transcriptoma , Femenino , Masculino , Pronóstico
3.
Molecules ; 29(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893575

RESUMEN

Sodium-ion batteries (SIBs) have received considerable attention in recent years. Anode material is one of the key factors that determine SIBs' electrochemical performance. Current commercial hard carbon anode shows poor rate performance, which greatly limits applications of SIBs. In this study, a novel vanadium-based material, SrV4O9, was proposed as an anode for SIBs, and its Na+ storage properties were studied for the first time. To enhance the electrical conductivity of SrV4O9 material, a microflower structure was designed and reduced graphene oxide (rGO) was introduced as a host to support SrV4O9 microflowers. The microflower structure effectively reduced electron diffusion distance, thus enhancing the electrical conductivity of the SrV4O9 material. The rGO showed excellent flexibility and electrical conductivity, which effectively improved the cycling life and rate performance of the SrV4O9 composite material. As a result, the SrV4O9@rGO composite showed excellent electrochemical performance (a stable capacity of 273.4 mAh g-1 after 200 cycles at 0.2 A g-1 and a high capacity of 120.4 mAh g-1 at 10.0 A g-1), indicating that SrV4O9@rGO composite can be an ideal anode material for SIBs.

4.
ACS Appl Mater Interfaces ; 16(13): 16927-16935, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506726

RESUMEN

Bismuth (Bi) exhibits a high theoretical capacity, excellent electrical conductivity properties, and remarkable interlayer spacing, making it an ideal electrode material for supercapacitors. However, during the charge and discharge processes, Bi is prone to volume expansion and pulverization, resulting in a decline in the capacitance. Deposition of a nonmetal on its surface is considered an effective way to modulate its morphology and electronic structure. Herein, we employed the chemical vapor deposition technique to fabricate Se-decorated Bi nanosheets on a nickel foam (NF) substrate. Various characterizations indicated that the deposition of Se on Bi nanosheets regulated their surface morphology and chemical state, while sustaining their pristine phase structure. Electrochemical tests demonstrated that Se-decorated Bi nanosheets exhibited a 51.1% improvement in capacity compared with pristine Bi nanosheets (1313 F/g compared to 869 F/g at a current density of 5 A/g). The energy density of the active material in an assembled asymmetric supercapacitor could reach 151.2 Wh/kg at a power density of 800 W/kg. These findings suggest that Se decoration is a promising strategy to enhance the capacity of the Bi nanosheets.

5.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38400220

RESUMEN

Due to their low cost and portability, using entertainment devices for indoor mapping applications has become a hot research topic. However, the impact of user behavior on indoor mapping evaluation with entertainment devices is often overlooked in previous studies. This article aims to assess the indoor mapping performance of entertainment devices under different mapping strategies. We chose two entertainment devices, the HoloLens 2 and iPhone 14 Pro, for our evaluation work. Based on our previous mapping experience and user habits, we defined four simplified indoor mapping strategies: straight-forward mapping (SFM), left-right alternating mapping (LRAM), round-trip straight-forward mapping (RT-SFM), and round-trip left-right alternating mapping (RT-LRAM). First, we acquired triangle mesh data under each strategy with the HoloLens 2 and iPhone 14 Pro. Then, we compared the changes in data completeness and accuracy between the different devices and indoor mapping applications. Our findings show that compared to the iPhone 14 Pro, the triangle mesh accuracy acquired by the HoloLens 2 has more stable performance under different strategies. Notably, the triangle mesh data acquired by the HoloLens 2 under the RT-LRAM strategy can effectively compensate for missing wall and floor surfaces, mainly caused by furniture occlusion and the low frame rate of the depth-sensing camera. However, the iPhone 14 Pro is more efficient in terms of mapping completeness and can acquire a complete triangle mesh more quickly than the HoloLens 2. In summary, choosing an entertainment device for indoor mapping requires a combination of specific needs and scenes. If accuracy and stability are important, the HoloLens 2 is more suitable; if efficiency and completeness are important, the iPhone 14 Pro is better.

6.
Acta Biomater ; 174: 372-385, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38072226

RESUMEN

Targeted delivery of therapeutic drugs to fibrosis-promoting macrophages (FPMs) holds promise as a challenging yet effective approach for the treatment of idiopathic pulmonary fibrosis (IPF). Here, nanocarriers composed of Mn-curcumin metal-organic frameworks (MOFs) were utilized to deliver the immune inhibitor BLZ-945 to the lungs, with the goal of depleting fibrosis-promoting macrophages (FPMs) from fibrotic lung tissues. FPM targeting was achieved by functionalizing the nanocarrier surface with an M2-like FPM binding peptide (M2pep). As a result, significant therapeutic benefits were observed through the successful depletion of approximately 80 % of the M2-like macrophages (FPMs) in a bleomycin-induced fibrosis mouse model treated with the designed M2-like FPM-targeting nanoparticle (referred to as M2NP-BLZ@Mn-Cur). Importantly, the released Mn2+ and curcumin after the degradation of M2NP-BLZ@Mn-Cur accumulated in the fibrotic lung tissue, which can alleviate inflammation and oxidative stress reactions, thereby further improving IPF therapy. This study presents a novel strategy with promising prospects for molecular-targeted fibrosis therapy. STATEMENT OF SIGNIFICANCE: Metal-organic frameworks (MOFs)- based nanocarriers equipped with both fibrosis-promoting macrophage (FPM)-specific targeting ability and therapeutic drugs are appealing for pulmonary fibrosis treatment. Here, we prepared M2pep (an M2-like FPM binding peptide)-modified and BLZ945 (a small molecule inhibitor of CSF1/CSF-1R axis)-loaded Mn-curcumin MOF nanoparticles (M2NP-BLZ@Mn-Cur) for pulmonary fibrosis therapy. The functionalized M2NP-BLZ@Mn-Cur nanoparticles can be preferentially taken up by FPMs, resulting in their depletion from fibrotic lung tissues. In addition, Mn2+and curcumin released from the nanocarriers have anti-inflammation and immune regulation effects, which further enhance the antifibrotic effect of the nanoparticles.


Asunto(s)
Curcumina , Fibrosis Pulmonar Idiopática , Estructuras Metalorgánicas , Ratones , Animales , Estructuras Metalorgánicas/farmacología , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/química , Macrófagos/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Péptidos/farmacología
7.
Materials (Basel) ; 16(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37895670

RESUMEN

We present a straightforward and cost-effective method for the fabrication of flexible photodetectors, utilizing tetragonal phase VO2 (A) nanorod (NR) networks. The devices exhibit exceptional photosensitivity, reproducibility, and stability in ambient conditions. With a 2.0 V bias voltage, the device demonstrates a photocurrent switching gain of 1982% and 282% under irradiation with light at wavelengths of 532 nm and 980 nm, respectively. The devices show a fast photoelectric response with rise times of 1.8 s and 1.9 s and decay times of 1.2 s and 1.7 s for light at wavelengths of 532 nm and 980 nm, respectively. In addition, the device demonstrates exceptional flexibility across large-angle bending and maintains excellent mechanical stability, even after undergoing numerous extreme bending cycles. We discuss the electron transport process within the nanorod networks, and propose a mechanism for the modulation of the barrier height induced by light. These characteristics reveal that the fabricated devices hold the potential to serve as a high-performance flexible photodetector.

8.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686923

RESUMEN

Nanocomposites that combine porous materials and a continuous conductive skeleton as a sulfur host can improve the performance of lithium-sulfur (Li-S) batteries. Herein, carbon nanotubes (CNTs) anchoring small-size (~40 nm) N-doped porous carbon polyhedrons (S-NCPs/CNTs) are designed and synthesized via annealing the precursor of zeolitic imidazolate framework-8 grown in situ on CNTs (ZIF-8/CNTs). In the nanocomposite, the S-NCPs serve as an efficient host for immobilizing polysulfides through physical adsorption and chemical bonding, while the interleaved CNT networks offer an efficient charge transport environment. Moreover, the S-NCP/CNT composite with great features of a large specific surface area, high pore volume, and short electronic/ion diffusion depth not only demonstrates a high trapping capacity for soluble lithium polysulfides but also offers an efficient charge/mass transport environment, and an effective buffering of volume changes during charge and discharge. As a result, the Li-S batteries based on a S/S-NCP/CNT cathode deliver a high initial capacity of 1213.8 mAh g-1 at a current rate of 0.2 C and a substantial capacity of 1114.2 mAh g-1 after 100 cycles, corresponding to a high-capacity retention of 91.7%. This approach provides a practical research direction for the design of MOF-derived carbon materials in the application of high-performance Li-S batteries.

9.
Phytomedicine ; 118: 154919, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392673

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) is an irreversible and fatal lung disease with limited therapeutic options. G protein-coupled receptor 40 (GPR40) has been developed as a promising therapeutic target for metabolic disorders and functions potently in varied pathological and physiological processes. Vincamine (Vin) is a monoterpenoid indole alkaloid originated from Madagascar periwinkle and was reported as a GPR40 agonist in our previous work. PURPOSE: Here, we aimed to clarify the role of GPR40 in PF pathogenesis by using the determined GPR40 agonist Vin as a probe and explore the potential of Vin in ameliorating PF in mice. METHODS: Pulmonary GPR40 expression alterations were assessed in both PF patients and bleomycin-induced PF mice (PF mice). Vin was used to evaluate the therapeutic potential of GPR40 activation for PF and the underlying mechanism was intensively investigated by assays against GPR40 knockout (Ffar1-/-) mice and the cells transfected with si-GPR40 in vitro. RESULTS: Pulmonary GPR40 expression level was highly downregulated in PF patients and PF mice. Pulmonary GPR40 deletion (Ffar1-/-) exacerbated pulmonary fibrosis as evidenced by the increases in mortality, dysfunctional lung index, activated myofibroblasts and extracellular matrix (ECM) deposition in PF mice. Vin-mediated pulmonary GPR40 activation ameliorated PF-like pathology in mice. Mechanistically, Vin suppressed ECM deposition by GPR40/ß-arrestin2/SMAD3 pathway, repressed inflammatory response by GPR40/NF-κB/NLRP3 pathway and inhibited angiogenesis by decreasing GPR40-mediated vascular endothelial growth factor (VEGF) expression in the region of interface to normal parenchyma in pulmonary fibrotic tissues of mice. CONCLUSION: Pulmonary GPR40 activation shows promise as a therapeutic strategy for PF and Vin exhibits high potential in treating this disease.


Asunto(s)
Fibrosis Pulmonar , Vincamina , Animales , Ratones , Bleomicina/farmacología , Pulmón/patología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Receptores Acoplados a Proteínas G/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Vincamina/toxicidad
10.
Inflamm Res ; 72(6): 1147-1160, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37166466

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive chronic interstitial lung disease with limited therapeutic options. Cuproptosis is a recently proposed novel form of programmed cell death, which has been strongly implicated in the development of various human diseases. However, the prognostic and therapeutic value of cuproptosis-related genes (CRGs) in IPF remains to be elucidated. METHODS: In the present study, weighted gene co-expression network analysis (WGCNA) was employed to identify the key CRGs associated with the development of IPF. The subsequent GSEA, immune cell correlation analysis, and single-cell RNA-Seq analysis were conducted to explore the potential role of the identified CRGs in IPF. In addition, ROC curves and survival analysis were used to assess the prognostic value of the key CRGs in IPF. Moreover, we explored the molecular mechanisms of participation of identified key CRGs in the development of pulmonary fibrogenesis through in vivo and in vitro experiments. RESULTS: The expression level of cyclin-dependent kinase inhibitor 2A (CDKN2A) is upregulated in the lung tissues of IPF patients and associated with disease severity. Notably, CDKN2A was constitutively expressed by fibrosis-promoting M2 macrophages. Decreased CDKN2A expression sensitizes M2 macrophages to elesclomol-induced cuproptosis in vitro. Inhibition of CDKN2A decreases the number of viable macrophages and attenuates bleomycin-induced pulmonary fibrosis in mice. CONCLUSION: These findings indicate that CDKN2A mediates the resistance of fibrosis-promoting M2 macrophages to cuproptosis and promotes pulmonary fibrosis in mice. Our work provides fresh insights into CRGs in IPF with potential value for research in the pathogenesis, diagnosis, and a new therapy strategy for IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Animales , Ratones , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/genética , Apoptosis , Bleomicina , Perfilación de la Expresión Génica , Inhibidor p16 de la Quinasa Dependiente de Ciclina
11.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203265

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown cause, and the involvement of fibroblasts in its pathogenesis is well recognized. However, a comprehensive understanding of fibroblasts' heterogeneity, their molecular characteristics, and their clinical relevance in IPF is lacking. In this study, we aimed to systematically classify fibroblast populations, uncover the molecular and biological features of fibroblast subtypes in fibrotic lung tissue, and establish an IPF-associated, fibroblast-related predictive model for IPF. Herein, a meticulous analysis of scRNA-seq data obtained from lung tissues of both normal and IPF patients was conducted to identify fibroblast subpopulations in fibrotic lung tissues. In addition, hdWGCNA was utilized to identify co-expressed gene modules associated with IPF-related fibroblasts. Furthermore, we explored the prognostic utility of signature genes for these IPF-related fibroblast subtypes using a machine learning-based approach. Two predominant fibroblast subpopulations, termed IPF-related fibroblasts, were identified in fibrotic lung tissues. Additionally, we identified co-expressed gene modules that are closely associated with IPF-fibroblasts by utilizing hdWGCNA. We identified gene signatures that hold promise as prognostic markers in IPF. Moreover, we constructed a predictive model specifically focused on IPF-fibroblasts which can be utilized to assess disease prognosis in IPF patients. These findings have the potential to improve disease prediction and facilitate targeted interventions for patients with IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/genética , Análisis de la Célula Individual , Fibroblastos , Redes Reguladoras de Genes , Aprendizaje Automático
13.
Differentiation ; 125: 35-44, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35487030

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal lung disease that is characterized by enhanced changes in stem cell differentiation and fibroblast proliferation. Lung resident mesenchymal stem cells (LR-MSCs) are important regulators of pathophysiological processes including tissue repair and inflammation, and evidence suggests that this cell population also plays an essential role in fibrosis. Our previous study demonstrated that Wnt/ß-catenin signaling is aberrantly activated in the lungs of bleomycin-treated mice and induces myofibroblast differentiation of LR-MSCs. However, the underlying correlation between LR-MSCs and the Wnt/ß-catenin signaling remains poorly understood. We found that Wnt8b was highly expressed by LR-MSCs undergoing myofibroblast differentiation. In vitro, Wnt8b promoted LR-MSCs differentiate into myofibroblasts via activating Wnt/ß-catenin signaling. Moreover, siRNA-mediated inhibition of Wnt8b prevented Transforming growth factor (TGF)-ß1-induced myofibroblast differentiation of LR-MSCs in vitro and ameliorated pulmonary fibrotic lesions. Our study identified Wnt proteins and Wnt/ß-catenin signaling in pulmonary fibrosis in vitro and in vivo, and highlighted Wnt8b as a potential therapeutic target in pulmonary fibrosis. Moreover, these finding might provide a new perspective in the development of treatment strategies for IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Células Madre Mesenquimatosas , Proteínas Wnt/metabolismo , Animales , Diferenciación Celular/genética , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/patología , beta Catenina/genética , beta Catenina/metabolismo
14.
Molecules ; 26(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672678

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a lethal, agnogenic interstitial lung disease with limited therapeutic options. To investigate vital genes involved in the development of IPF, we integrated and compared four expression profiles (GSE110147, GSE53845, GSE24206, and GSE10667), including 87 IPF samples and 40 normal samples. By reanalyzing these datasets, we managed to identify 62 upregulated genes and 20 downregulated genes in IPF samples compared with normal samples. Differentially expressed genes (DEGs) were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to illustrate relevant pathways of IPF, biological processes, molecular function, and cell components. The DEGs were then subjected to protein-protein interaction (PPI) for network analysis, serving to find 11 key candidate genes (ANXA3, STX11, THBS2, MMP1, MMP9, MMP7, MMP10, SPP1, COL1A1, ITGB8, IGF1). The result of RT-qPCR and immunohistochemical staining verified our finding as well. In summary, we identified 11 key candidate genes related to the process of IPF, which may contribute to novel treatments of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/genética , Anexina A3/genética , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Cadenas beta de Integrinas/genética , Metaloproteinasas de la Matriz/genética , Osteopontina/genética , Mapas de Interacción de Proteínas , Proteínas Qa-SNARE/genética , Trombospondinas/genética
15.
Theranostics ; 11(7): 3244-3261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33537085

RESUMEN

Rationale: (Myo)fibroblasts are the ultimate effector cells responsible for the production of collagen within alveolar structures, a core phenomenon in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Although (myo)fibroblast-targeted therapy holds great promise for suppressing the progression of IPF, its development is hindered by the limited drug delivery efficacy to (myo)fibroblasts and the vicious circle of (myo)fibroblast activation and evasion of apoptosis. Methods: Here, a dual small interfering RNA (siRNA)-loaded delivery system of polymeric micelles is developed to suppress the development of pulmonary fibrosis via a two-arm mechanism. The micelles are endowed with (myo)fibroblast-targeting ability by modifying the Fab' fragment of the anti-platelet-derived growth factor receptor-α (PDGFRα) antibody onto their surface. Two different sequences of siRNA targeting protein tyrosine phosphatase-N13 (PTPN13, a promoter of the resistance of (myo)fibroblasts to Fas-induced apoptosis) and NADPH oxidase-4 (NOX4, a key regulator for (myo)fibroblast differentiation and activation) are loaded into micelles to inhibit the formation of fibroblastic foci. Results: We demonstrate that Fab'-conjugated dual siRNA-micelles exhibit higher affinity to (myo)fibroblasts in fibrotic lung tissue. This Fab'-conjugated dual siRNA-micelle can achieve remarkable antifibrotic effects on the formation of fibroblastic foci by, on the one hand, suppressing (myo)fibroblast activation via siRNA-induced knockdown of NOX4 and, on the other hand, sensitizing (myo)fibroblasts to Fas-induced apoptosis by siRNA-mediated PTPN13 silencing. In addition, this (myo)fibroblast-targeting siRNA-loaded micelle did not induce significant damage to major organs, and no histopathological abnormities were observed in murine models. Conclusion: The (myo)fibroblast-targeting dual siRNA-loaded micelles offer a potential strategy with promising prospects in molecular-targeted fibrosis therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Fibrosis Pulmonar Idiopática/terapia , Terapia Molecular Dirigida/métodos , Miofibroblastos/metabolismo , NADPH Oxidasa 4/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 13/genética , Animales , Bleomicina/administración & dosificación , Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Micelas , Miofibroblastos/patología , NADPH Oxidasa 4/antagonistas & inhibidores , NADPH Oxidasa 4/metabolismo , Cultivo Primario de Células , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 13/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 13/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Resultado del Tratamiento
16.
Adv Mater ; 33(12): e2007798, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33604928

RESUMEN

Inhibiting the myofibroblast differentiation of lung-resident mesenchymal stem cells (LR-MSCs) is a promising yet challenging approach for pulmonary fibrosis (PF) therapy. Here, micelles formed by a graft copolymer of multiple PEGs modified branched polyethylenimine are used for delivering runt-related transcription factor-1 (RUNX1) small interfering RNA (siRNA) (siRUNX1) to the lung, aiming to inhibit the myofibroblast differentiation of LR-MSCs. LR-MSC targeting is achieved by functionalizing the micelle surface with an anti-stem-cell antigen-1 antibody fragment (Fab'). Consequently, therapeutic benefits are obtained by successful suppression of myofibroblast differentiation of LR-MSCs in bleomycin-induced PF model mice treated with siRUNX1-loaded micelles. Furthermore, an excellent synergistic effect of PF therapy is achieved for this micelle system loaded siRUNX1 and glioma-associated oncogene homolog-1 (Gli1) small interfering RNA (siGli1), a traditional anti-PF siRNA of glioma-associated oncogene homolog-1. Hence, this work not only provides RUNX1 as a novel PF therapeutic target, but also as a promising dual siRNA-loaded nanocarrier system for the therapy of PF.


Asunto(s)
Portadores de Fármacos/química , Polímeros/química , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/terapia , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Animales , Ratones , Micelas
17.
Ecotoxicol Environ Saf ; 208: 111748, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396074

RESUMEN

Microcystin-leucine arginine (MC-LR) is a kind of toxin produced by cyanobacterial, resulting in decrease of testosterone levels in serum and leading to impaired spermatogenesis. Gonadotropin-releasing hormone (GnRH) neurons play crucial roles in the regulation of testosterone release. Meanwhile, it has been demonstrated that MC-LR is capable of entering the GnRH neurons and inducing apoptosis. Nevertheless, the molecular mechanism of MC-LR induced apoptosis of GnRH neurons remains elusive. In present study, we found that MC-LR inhibited the cell viability of GT1-7 cells. In addition, we discovered apoptosis of GnRH neurons and GT1-7 cells treated with MC-LR. And increased intracellular ROS production and the release of intracellular Ca2+ were all observed following exposure to MC-LR. Furthermore, we also found the endoplasmic reticulum stress (ERs) and autophagy were activated by MC-LR. Additionally, pretreatment of the ERs inhibitor (4-Phenyl butyric acid) reduced the apoptotic rate of GT1-7 cells comparing with MC-LR exposure alone. Comparing with MC-LR treatment alone, apoptotic cell death was increased by pretreatment of GT1-7 cells with an autophagy inhibitor (3-methyladenine). Together, our data implicated that the treatment of MC-LR induced the apoptosis of GnRH neurons by activating the ERs resulting in a decrease of serum testosterone level in mice. Autophagy is a protective cellular process which was activated by ER stress and thus protected cells from apoptosis upon MC-LR exposure.


Asunto(s)
Estrés del Retículo Endoplásmico , Microcistinas/toxicidad , Testosterona/sangre , Animales , Apoptosis , Arginina/metabolismo , Bioensayo , Supervivencia Celular , Cianobacterias/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Leucina/metabolismo , Masculino , Toxinas Marinas/metabolismo , Ratones , Microcistinas/metabolismo , Neuronas/metabolismo , Testosterona/metabolismo
18.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166077, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33515677

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a lethal and agnogenic interstitial lung disease, which has limited therapeutic options. Recently, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome has been demonstrated as an important contributor to various fibrotic diseases following its persistent activation. However, the role of NLRP3 inflammasome in pulmonary fibrogenesis still needs to be further clarified. Here, we found that the activation of the NLRP3 inflammasome was raised in fibrotic lungs. In addition, the NLRP3 inflammasome was found to be activated in alveolar epithelial cells (AECs) in the lung tissue of both IPF patients and pulmonary fibrosis mouse models. Further research revealed that epithelial cells, following activation of the NLRP3 inflammasome, could induce the myofibroblast differentiation of lung-resident mesenchymal stem cells (LR-MSCs). In addition, inhibiting the activation of the NLRP3 inflammasome in epithelial cells promoted the expression of dickkopf-1 (DKK1), a secreted Wnt antagonist. DKK1 was capable of suppressing the profibrogenic differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis. In conclusion, this study not only provides a further in-depth understanding of the pathogenesis of pulmonary fibrosis, but also reveals a potential therapeutic strategy for disorders associated with pulmonary fibrosis.


Asunto(s)
Células Epiteliales Alveolares/patología , Diferenciación Celular , Inflamasomas/metabolismo , Miofibroblastos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fibrosis Pulmonar/patología , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/inmunología , Miofibroblastos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/metabolismo , Vía de Señalización Wnt
19.
FEBS J ; 288(11): 3530-3546, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33314622

RESUMEN

The alternative activation of macrophages in the lungs has been considered as a major factor promoting pulmonary fibrogenesis; however, the mechanisms underlying this phenomenon are still elusive. In this study, we investigated the interaction between macrophages and fibrosis-associated alveolar epithelial cells using a bleomycin-induced mouse pulmonary fibrosis model and a coculture system. We demonstrated that fibrosis-promoting macrophages are spatially proximate to alveolar type II (ATII) cells, permissive for paracrine-induced macrophage polarization. Importantly, we revealed that fibrosis-associated ATII cells secrete Sonic hedgehog (Shh), a hedgehog pathway ligand, and that ATII cell-derived Shh promotes the development of pulmonary fibrosis by osteopontin (OPN)-mediated macrophage alternative activation. Mechanistically, Shh promotes the secretion of OPN in macrophages via Shh/Gli signaling cascade. The secreted OPN acts on the surrounding macrophages in an autocrine or paracrine manner and induces macrophage alternative activation through activating the JAK2/STAT3 signaling pathway. Tissue samples from idiopathic pulmonary fibrosis patients confirmed the increased expression of Shh and OPN in ATII cells and macrophages, respectively. Together, our study illustrated an alveolar epithelium-dependent mechanism for macrophage M2 polarization and pulmonary fibrogenesis and suggested that targeting Shh may offer a selective and efficient therapeutic strategy for the development and progression of pulmonary fibrosis.


Asunto(s)
Proteínas Hedgehog/genética , Janus Quinasa 2/genética , Osteopontina/genética , Fibrosis Pulmonar/genética , Factor de Transcripción STAT3/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Modelos Animales de Enfermedad , Humanos , Activación de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Fibrosis Pulmonar/patología , Transducción de Señal/genética
20.
Environ Health ; 19(1): 87, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738922

RESUMEN

BACKGROUND: A previous study showed that dibutyl phthalate (DBP) exposure disrupted the growth of testicular Sertoli cells (SCs). In the present study, we aimed to investigate the potential mechanism by which DBP promotes juvenile SC proliferation in vivo and in vitro. METHODS: Timed pregnant BALB/c mice were exposed to vehicle, or DBP (50, 250, and 500 mg/kg/day) from 12.5 days of gestation until delivery. In vitro, CCK-8 and EdU incorporation assays were performed to determine the effect of monobutyl phthalate (MBP), the active metabolite of DBP, on the proliferation of TM4 cells, which are a juvenile testicular SC cell line. Western blotting analysis, quantitative PCR (q-PCR), and flow cytometry were performed to analyse the expression of genes and proteins related to the proliferation and apoptosis of TM4 cells. Coimmunoprecipitation was used to determine the relationship between the ubiquitination of interleukin 1 receptor-associated kinase 1 (IRAK1) and the effect of MBP on promoting the proliferation of TM4 cells. RESULTS: In the 50 mg/kg/day DBP-exposed male mice offspring, the number of SCs was significantly increased. Consistent with the in vivo results, in vitro experiments revealed that 0.1 mM MBP treatment promoted the proliferation of TM4 cells. Furthermore, the data showed that 0.1 mM MBP-mediated downregulation of the E3 ubiquitin ligase Pellino 2 (Peli2) increased ubiquitination of IRAK1 by K63, which activated MAPK/JNK signalling, leading to the proliferation of TM4 cells. CONCLUSIONS: Prenatal exposure to DBP led to abnormal proliferation of SCs in prepubertal mice by affecting ubiquitination of the key proliferation-related protein IRAK1 via downregulation of Peli2.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Dibutil Ftalato/efectos adversos , Proteínas Nucleares/genética , Ácidos Ftálicos/efectos adversos , Plastificantes/efectos adversos , Células de Sertoli/efectos de los fármacos , Animales , Proliferación Celular/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Nucleares/metabolismo , Células de Sertoli/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...