Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(12): 6068-6077, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38433725

RESUMEN

The exciton-polaritons in a lead halide perovskite not only have great significance for macroscopic quantum effects but also possess vital potential for applications in ultralow-threshold polariton lasers, integrated photonics, slow-light devices, and quantum light sources. In this study, we have successfully demonstrated strong coupling with huge Rabi splitting of 553 meV between perovskite excitons and anapole modes in the perovskite metasurface at room temperature. This outcome is achieved by introducing anapole modes to suppress radiative losses, thereby confining light to the perovskite metasurface and subsequently hybridizing it with excitons in the same material. Our results indicate the formation of self-hybridized exciton-polaritons within the perovskite metasurface, which may pave the way towards achieving high coupling strengths that could potentially bring exciting phenomena to fruition, such as Bose-Einstein condensation as well as enabling applications such as efficient light-emitting diodes and lasers.

2.
Front Chem ; 7: 342, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139624

RESUMEN

Viscosity of body fluid is an established biomarker of pathological conditions. Abnormality of cellular viscosity occurs when cells are challenged with external stresses. Small molecule probes to assess the viscosity are sought after for both disease diagnostics and basic studies. Fluorescence based probes are particular attractive due to their potentials for convenient and high spatiotemporal resolution microscopic monitoring of biological samples. The dyes with a floppy push-pull backbone or dyes with a rotatable substituent exhibits a viscosity responsive fluorescence enhancement and therefore viable viscosity probes. The scaffold of the existing viscosity probes contains typically one such floppy site. Therefore, they typically linearly respond to log(viscosity). We argue that minor viscosity fluctuation could potentially be physiological as the biological system is dynamic. We wish to develop a type of conceptually-new, threshold-limited viscosity probes, to complement the existing probes. Such probes do not exhibit a fluorescence enhancement when challenged with minor and presumably physiological enhancement of viscosity. When the viscosity is higher than a certain threshold, their fluorescence turns on. We hypothesize that a dye with two far-apart floppy sites could potentially yield such a threshold-limited signal and designed VPZ2 and VPZ3. Through spectral titration, VPZ3 was found to yield the desired threshold-limited signal. VPZ3 was suitable for in vitro bioimaging of viscosity under one-photon or two-photon excitation. VPZ3 is potentially useful in many downstream applications. Future work includes fine-tune of the threshold to allow tailored limit for fluorescence turn-on to better meet the need of different applications. Besides the implications in the real-world applications, the design concept could also be translated to design of alternative substrates.

3.
Chem Commun (Camb) ; 55(12): 1782-1785, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30667006

RESUMEN

A benzimidazole-decorated two-photon fluorescent probe (Lyso-MPCB) based on the p-methoxyphenylacetylene-substituted carbazole was developed for detecting lysosomal pH with a double-channel signal, which can be used to visualize autophagy by real-time imaging the fluctuation of the pH in the lysosomes.

4.
Anal Chem ; 90(12): 7122-7126, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29865790

RESUMEN

We reported the first lysosome targeted two-photon fluorescent probe (Lyso-NP) as a viscosity probe for monitoring autophagy. The fluorescence lifetime of Lyso-NP exhibited an excellent linear relationship with viscosity value ( R2 = 0.99, x = 0.39). Lyso-NP also showed the specific capability for imaging lysosomal viscosity under two-photon excitation at 860 nm along with good biocompatibility. More importantly, Lyso-NP could be used to monitor the autophagy process in living cells by quantitatively detecting lysosomal viscosity changes during the membrane fusion process via two-photon fluorescence lifetime imaging.


Asunto(s)
Autofagia , Colorantes Fluorescentes/química , Imagen Óptica , Fotones , Humanos , Células MCF-7 , Microscopía Fluorescente , Estructura Molecular , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...