Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 22(4): 633-45, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26321661

RESUMEN

s-adenosylmethionine (SAM) is the sole methyl donor modifying histones, nucleic acids, and phospholipids. Its fluctuation affects hepatic phosphatidylcholine (PC) synthesis or may be linked to variations in DNA or histone methylation. Physiologically, low SAM is associated with lipid accumulation, tissue injury, and immune responses in fatty liver disease. However, molecular connections among SAM limitation, methyltransferases, and disease-associated phenotypes are unclear. We find that low SAM can activate or attenuate Caenorhabditis elegans immune responses. Immune pathways are stimulated downstream of PC production on a non-pathogenic diet. In contrast, distinct SAM-dependent mechanisms limit survival on pathogenic Pseudomonas aeruginosa. C. elegans undertakes a broad transcriptional response to pathogens and we find that low SAM restricts H3K4me3 at Pseudomonas-responsive promoters, limiting their expression. Furthermore, this response depends on the H3K4 methyltransferase set-16/MLL. Thus, our studies provide molecular links between SAM and innate immune functions and suggest that SAM depletion may limit stress-induced gene expression.


Asunto(s)
Inmunidad Innata , S-Adenosilmetionina/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Hígado/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilcolinas/metabolismo , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/fisiología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(22): E2271-80, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843123

RESUMEN

The Mediator is a conserved transcriptional coregulator complex required for eukaryotic gene expression. In Caenorhabditis elegans, the Mediator subunit mdt-15 is essential for the expression of genes involved in fatty acid metabolism and ingestion-associated stress responses. mdt-15 loss of function causes defects in reproduction and mobility and shortens lifespan. In the present study, we find that worms with mutated or depleted mdt-15 (mdt-15 worms) exhibit decreased membrane phospholipid desaturation, especially in phosphatidylcholine. Accordingly, mdt-15 worms exhibit disturbed endoplasmic reticulum (ER) homeostasis, as indicated by a constitutively activated ER unfolded protein response (UPR(ER)). Activation of this stress response is only partially the consequence of reduced membrane lipid desaturation, implicating other mdt-15-regulated processes in maintaining ER homeostasis. Interestingly, mdt-15 inactivation or depletion of the lipid metabolism enzymes stearoyl-CoA-desaturases (SCD) and S-adenosyl methionine synthetase (sams-1) activates the UPR(ER) without promoting misfolded protein aggregates. Moreover, these worms exhibit wild-type sensitivity to chemically induced protein misfolding, and they do not display synthetic lethality with mutations in UPR(ER) genes, which cause protein misfolding. Therefore, the constitutively activated UPR(ER) in mdt-15, SCD, and sams-1 worms is not the consequence of proteotoxic stress but likely is the direct result of changes in ER membrane fluidity and composition. Together, our data suggest that the UPR(ER) is induced directly upon membrane disequilibrium and thus monitors altered ER homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Retículo Endoplásmico/metabolismo , Deficiencias en la Proteostasis/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/fisiología , Acilcoenzima A/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cardiolipinas/metabolismo , Ácidos Grasos/metabolismo , Homeostasis/fisiología , Lípidos/biosíntesis , Mitocondrias/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Factores de Transcripción/genética
3.
Worm ; 3(3): e962405, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26430548

RESUMEN

The unfolded protein response of the endoplasmic reticulum (UPR(ER)) is a conserved signaling circuit that ensures ER protein homeostasis (proteostasis). In the UPR(ER) of higher eukaryotes, multiple sensors cooperatively perceive proteostatic disturbances in the ER lumen and induce downstream adaptive changes. Besides direct proteotoxic insults, altered lipid profiles can also lead to UPR(ER) activation, evidently because abnormal lipid composition impairs protein folding. However, 2 recent studies propose an alternative mechanism of UPR(ER) sensor activation. In one report, UPR(ER) activation occurred in cells expressing UPR(ER) sensors lacking the very domains that sense unfolded proteins; the other study found that Caenorhabditis elegans worms displayed UPR(ER) activation without apparent proteostatic imbalance in the ER lumen. Collectively, these studies suggest that lipid disequilibrium-activated UPR(ER) is not strictly accompanied by compromised ER proteostasis and hint at a lipid membrane-monitoring role of the UPR(ER). These discoveries raise several important questions: does the UPR(ER) monitor and maintain homeostasis of the ER membrane and/or its lipids? In turn, does the UPR(ER) initiate downstream regulatory events that specifically alleviate lipid or proteostatic imbalance? And what is the physiological significance of proteostasis-independent UPR(ER) activation? In this commentary, we will discuss these issues and highlight the utility of C. elegans as an in vivo model to study lipid disequilibrium-induced UPR(ER) and related pathways.

4.
Aging Cell ; 13(1): 70-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23957350

RESUMEN

Reactive oxygen species (ROS) play important signaling roles in metazoans, but also cause significant molecular damage. Animals tightly control ROS levels using sophisticated defense mechanisms, yet the transcriptional pathways that induce ROS defense remain incompletely understood. In the nematode Caenorhabditis elegans, the transcription factor SKN-1 is considered a master regulator for detoxification and oxidative stress responses. Here, we show that MDT-15, a subunit of the conserved Mediator complex, is also required for oxidative stress responses in nematodes. Specifically, mdt-15 is required to express SKN-1 targets upon chemical and genetic increase in SKN-1 activity. mdt-15 is also required to express genes in SKN-1-dependent and SKN-1-independent fashions downstream of insulin/IGF-1 signaling and for the longevity of daf-2/insulin receptor mutants. At the molecular level, MDT-15 binds SKN-1 through a region distinct from the classical transcription-factor-binding KIX-domain. Moreover, mdt-15 is essential for the transcriptional response to and survival on the organic peroxide tert-butyl-hydroperoxide (tBOOH), a largely SKN-1-independent response. The MDT-15 interacting nuclear hormone receptor, NHR-64, is specifically required for tBOOH but not arsenite resistance, but NHR-64 is dispensable for the transcriptional response to tBOOH. Hence, NHR-64 and MDT-15's mode of action remain elusive. Lastly, the role of MDT-15 in oxidative stress defense is functionally separable from its function in fatty acid metabolism, as exogenous polyunsaturated fatty acid complementation rescues developmental, but not stress sensitivity phenotypes of mdt-15 worms. Our findings reveal novel conserved players in the oxidative stress response and suggest a broad cytoprotective role for MDT-15.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Secuencia Conservada , Estrés Oxidativo , Factores de Transcripción/metabolismo , Animales , Arsenitos/toxicidad , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Genes de Helminto , Modelos Biológicos , Estrés Oxidativo/genética , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo , Eliminación de Secuencia , Análisis de Supervivencia , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , terc-Butilhidroperóxido/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...