RESUMEN
Optical imaging with nanoscale resolution and a large field of view is highly desirable in many research areas. Unfortunately, it is challenging to achieve these two features simultaneously while using a conventional microscope. An objective lens with a low numerical aperture (NA) has a large field of view but poor resolution. In contrast, a high NA objective lens will have a higher resolution but reduced field of view. In an effort to close the gap between these trade-offs, we introduce an acoustofluidic scanning nanoscope (AS-nanoscope) that can simultaneously achieve high resolution with a large field of view. The AS-nanoscope relies on acoustofluidic-assisted scanning of multiple microsized particles. A scanned 2D image is then compiled by processing the microparticle images using an automated big-data image algorithm. The AS-nanoscope has the potential to be integrated into a conventional microscope or could serve as a stand-alone instrument for a wide range of applications where both high resolution and large field of view are required.
RESUMEN
B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.
Asunto(s)
Proteínas Portadoras/genética , Senescencia Celular/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/patología , Proteínas Nucleares/genética , Animales , Quinasa 6 Dependiente de la Ciclina/biosíntesis , Proteínas de Unión al ADN , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteínas RepresorasRESUMEN
Reactivation of fetal hemoglobin (HbF) in adults ameliorates the severity of the common ß-globin disorders. The transcription factor BCL11A is a critical modulator of hemoglobin switching and HbF silencing, yet the molecular mechanism through which BCL11A coordinates the developmental switch is incompletely understood. Particularly, the identities of BCL11A cooperating protein complexes and their roles in HbF expression and erythroid development remain largely unknown. Here we determine the interacting partner proteins of BCL11A in erythroid cells by a proteomic screen. BCL11A is found within multiprotein complexes consisting of erythroid transcription factors, transcriptional corepressors, and chromatin-modifying enzymes. We show that the lysine-specific demethylase 1 and repressor element-1 silencing transcription factor corepressor 1 (LSD1/CoREST) histone demethylase complex interacts with BCL11A and is required for full developmental silencing of mouse embryonic ß-like globin genes and human γ-globin genes in adult erythroid cells in vivo. In addition, LSD1 is essential for normal erythroid development. Furthermore, the DNA methyltransferase 1 (DNMT1) is identified as a BCL11A-associated protein in the proteomic screen. DNMT1 is required to maintain HbF silencing in primary human adult erythroid cells. DNMT1 haploinsufficiency combined with BCL11A deficiency further enhances γ-globin expression in adult animals. Our findings provide important insights into the mechanistic roles of BCL11A in HbF silencing and clues for therapeutic targeting of BCL11A in ß-hemoglobinopathies.
Asunto(s)
Proteínas Portadoras/farmacología , Proteínas Co-Represoras/metabolismo , Hemoglobina Fetal/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/farmacología , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Cromatografía Liquida , Células Precursoras Eritroides , Humanos , Ratones , Proteínas Nucleares/metabolismo , Proteómica , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras , Espectrometría de Masas en Tándem , Globinas beta/metabolismoRESUMEN
Gene-distal enhancers are critical for tissue-specific gene expression, but their genomic determinants within a specific lineage at different stages of development are unknown. Here we profile chromatin state maps, transcription factor occupancy, and gene expression profiles during human erythroid development at fetal and adult stages. Comparative analyses of human erythropoiesis identify developmental stage-specific enhancers as primary determinants of stage-specific gene expression programs. We find that erythroid master regulators GATA1 and TAL1 act cooperatively within active enhancers but confer little predictive value for stage specificity. Instead, a set of stage-specific coregulators collaborates with master regulators and contributes to differential gene expression. We further identify and validate IRF2, IRF6, and MYB as effectors of an adult-stage expression program. Thus, the combinatorial assembly of lineage-specific master regulators and transcriptional coregulators within developmental stage-specific enhancers determines gene expression programs and temporal regulation of transcriptional networks in a mammalian genome.