Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trials ; 25(1): 200, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509589

RESUMEN

BACKGROUND: The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS: The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION: The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.


Asunto(s)
Enfermedad de Parkinson , Estimulación Transcraneal de Corriente Directa , Humanos , Persona de Mediana Edad , Anciano , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/complicaciones , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Transcraneal de Corriente Directa/métodos , Calidad de Vida , Terapia por Ejercicio/métodos , Método Doble Ciego , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
J Biol Chem ; 298(9): 102372, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970391

RESUMEN

Nitrogen (N2) gas in the atmosphere is partially replenished by microbial denitrification of ammonia. Recent study has shown that Alcaligenes ammonioxydans oxidizes ammonia to dinitrogen via a process featuring the intermediate hydroxylamine, termed "Dirammox" (direct ammonia oxidation). However, the unique biochemistry of this process remains unknown. Here, we report an enzyme involved in Dirammox that catalyzes the conversion of hydroxylamine to N2. We tested previously annotated proteins involved in redox reactions, DnfA, DnfB, and DnfC, to determine their ability to catalyze the oxidation of ammonia or hydroxylamine. Our results showed that none of these proteins bound to ammonia or catalyzed its oxidation; however, we did find DnfA bound to hydroxylamine. Further experiments demonstrated that, in the presence of NADH and FAD, DnfA catalyzed the conversion of 15N-labeled hydroxylamine to 15N2. This conversion did not happen under oxygen (O2)-free conditions. Thus, we concluded that DnfA encodes a hydroxylamine oxidase. We demonstrate that DnfA is not homologous to any known hydroxylamine oxidoreductases and contains a diiron center, which was shown to be involved in catalysis via electron paramagnetic resonance experiments. Furthermore, enzyme kinetics of DnfA were assayed, revealing a Km of 92.9 ± 3.0 µM for hydroxylamine and a kcat of 0.028 ± 0.001 s-1. Finally, we show that DnfA was localized in the cytoplasm and periplasm as well as in tubular membrane invaginations in HO-1 cells. To the best of our knowledge, we conclude that DnfA is the first enzyme discovered that catalyzes oxidation of hydroxylamine to N2.


Asunto(s)
Alcaligenes , Amoníaco , Hidroxilaminas , Oxidorreductasas , Alcaligenes/enzimología , Amoníaco/metabolismo , Proteínas Bacterianas/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Hidroxilaminas/metabolismo , NAD/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno
3.
Front Chem ; 10: 943925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903195

RESUMEN

The efficient development of latent fingerprint (LFP) is attractively important for criminal investigation. The low-cost and high-contrast developer is still a challenge. In this study, we designed and synthesized dicyanomethylene-4H-pyran (DCM) derivatives PZ-DCM and Boc-PZ-DCM by introducing of large steric hindrance group Boc, the solid-state fluorescence of DCM derivatives was greatly enhanced. The low-cost fluorescent LFP developers were prepared by blending with different proportion of montmorillonite (MMT). As a result, clear and high contrast fingerprint patterns were obtained with dusting method by the developer with 3% content of Boc-PZ-DCM. Furthermore, we employed the developer with 3% content of Boc-PZ-DCM to develop the sweat latent fingerprints on different substrates by powder dusting, and collected clear fingerprint patterns, indicating that the developer is universal. In a word, the Boc-PZ-DCM/MMT powder is a promising candidate for LFP developer.

4.
Front Chem ; 10: 903253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677595

RESUMEN

As one of the typical fluorescent cores, dicyanomethylene-4H-pyran (DCM) derivatives exhibit excellent photophysical and photochemical properties, such as large Stokes shift, excellent light stability, and tunable near-infrared (NIR) emission. The luminescence mechanism of DCM probes mainly depends on the intramolecular charge transfer (ICT). Hence, by regulating the ICT process, the probes can specifically act on the target molecule. Accordingly, a series of NIR DCM probes have been constructed to detect the ions, reactive oxygen species (ROS), and biological macromolecules in cells. However, there is no relevant review to summarize it at present. This minireview mainly summarizes the NIR DCM probes based on ICT effect and their applications in biosensors and biological imaging in recent years. This will be beneficial to innovatively construct new DCM probes and actively promote their application in the future.

5.
Front Microbiol ; 13: 864053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633697

RESUMEN

Nitrogen cycle is an essential process for environmental health. Dirammox (direct ammonia oxidation), encoded by the dnfT1RT2ABCD cluster, was a novel pathway for microbial N2 production defined in Alcaligenes ammonioxydans HO-1. Here, a copy of the cluster dnfT1RT2ABCD as a whole was proved to have existed and very conserved in all Alcaligenes genomes. Phylogenetic analyses based on 16S rRNA gene sequences and amino acid sequences of DnfAs, together with G + C content data, revealed that dnf cluster was evolved associated with the members of the genus Alcaligenes. Under 20% O2 conditions, 14 of 16 Alcaligenes strains showed Dirammox activity, which seemed likely taxon-related. However, the in vitro activities of DnfAs catalyzing the direct oxidation of hydroxylamine to N2 were not taxon-related but depended on the contents of Fe and Mn ions. The results indicated that DnfA is necessary but not sufficient for Dirammox activity. The fact that members of the genus Alcaligenes are widely distributed in various environments, including soil, water bodies (both freshwater and seawater), sediments, activated sludge, and animal-plant-associated environments, strongly suggests that Dirammox is important to the nitrogen cycle. In addition, Alcaligenes species are also commonly found in wastewater treatment plants, suggesting that they might be valuable resources for wastewater treatment.

6.
Environ Microbiol ; 23(11): 6965-6980, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34581470

RESUMEN

Heterotrophic nitrifiers are able to oxidize and remove ammonia from nitrogen-rich wastewaters but the genetic elements of heterotrophic ammonia oxidation are poorly understood. Here, we isolated and identified a novel heterotrophic nitrifier, Alcaligenes ammonioxydans sp. nov. strain HO-1, oxidizing ammonia to hydroxylamine and ending in the production of N2 gas. Genome analysis revealed that strain HO-1 encoded a complete denitrification pathway but lacks any genes coding for homologous to known ammonia monooxygenases or hydroxylamine oxidoreductases. Our results demonstrated strain HO-1 denitrified nitrite (not nitrate) to N2 and N2 O at anaerobic and aerobic conditions respectively. Further experiments demonstrated that inhibition of aerobic denitrification did not stop ammonia oxidation and N2 production. A gene cluster (dnfT1RT2ABCD) was cloned from strain HO-1 and enabled E. coli accumulated hydroxylamine. Sub-cloning showed that genetic cluster dnfAB or dnfABC already enabled E. coli cells to produce hydroxylamine and further to 15 N2 from (15 NH4 )2 SO4 . Transcriptome analysis revealed these three genes dnfA, dnfB and dnfC were significantly upregulated in response to ammonia stimulation. Taken together, we concluded that strain HO-1 has a novel dnf genetic cluster for ammonia oxidation and this dnf genetic cluster encoded a previously unknown pathway of direct ammonia oxidation (Dirammox) to N2 .


Asunto(s)
Amoníaco , Purificación del Agua , Aerobiosis , Alcaligenes/genética , Alcaligenes/metabolismo , Amoníaco/metabolismo , Desnitrificación , Escherichia coli/metabolismo , Nitrificación , Nitritos/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Aguas del Alcantarillado , Purificación del Agua/métodos
7.
Microb Cell Fact ; 20(1): 5, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413415

RESUMEN

BACKGROUND: Phaffia rhodozyma has many desirable properties for astaxanthin production, including rapid heterotrophic metabolism and high cell densities in fermenter culture. The low optimal temperature range (17-21 °C) for cell growth and astaxanthin synthesis in this species presents an obstacle to efficient industrial-scale astaxanthin production. The inhibition mechanism of cell growth at > 21 °C in P. rhodozyma have not been investigated. RESULTS: MK19, a mutant P. rhodozyma strain grows well at moderate temperatures, its cell growth was also inhibited at 28 °C, but such inhibition was mitigated, and low biomass 6 g/L was obtained after 100 h culture. Transcriptome analysis indicated that low biomass at 28 °C resulted from strong suppression of DNA and RNA synthesis in MK19. Growth inhibition at 28 °C was due to cell membrane damage with a characteristic of low mRNA content of fatty acid (f.a.) pathway transcripts (acc, fas1, fas2), and consequent low f.a. CONTENT: Thinning of cell wall and low mannose content (leading to loss of cell wall integrity) also contributed to reduced cell growth at 28 °C in MK19. Levels of astaxanthin and ergosterol, two end-products of isoprenoid biosynthesis (a shunt pathway of f.a. biosynthesis), reached 2000 µg/g and 7500 µg/g respectively; ~2-fold higher than levels at 21 or 25 °C. Abundance of ergosterol, an important cell membrane component, compensated for lack of f.a., making possible the biomass production of 6 g/L for MK19 at 28 °C. CONCLUSIONS: Inhibition of growth of P. rhodozyma at 28 °C results from blocking of DNA, RNA, f.a., and cell wall biosynthesis. In MK19, abundant ergosterol made possible biomass production 6 g/L at 28 °C. Significant accumulation of astaxanthin and ergosterol indicated an active MVA pathway in MK19 at 28 °C. Strengthening of the MVA pathway can be a feasible metabolic engineering approach for enhancement of astaxanthin synthesis in P. rhodozyma. The present findings provide useful mechanistic insights regarding adaptation of P. rhodozyma to 28 °C, and improved understanding of feasible metabolic engineering techniques for industrial scale astaxanthin production by this economically important yeast species.


Asunto(s)
Adaptación Fisiológica , Basidiomycota/metabolismo , Pared Celular/química , Ergosterol/metabolismo , Temperatura , Basidiomycota/genética , Basidiomycota/crecimiento & desarrollo , Perfilación de la Expresión Génica , Ingeniería Metabólica , Xantófilas/metabolismo
8.
World J Clin Cases ; 9(36): 11448-11456, 2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35071577

RESUMEN

BACKGROUND: It is relatively rare for schwannomas to invade bone, but it is very rare for a large mass to form concurrently in the paravertebral region. Surgical resection is the only effective treatment. Because of the extensive tumor involvement and the many important surrounding structures, the tumor needs to be fully exposed. Most of the tumors are completely removed by posterior combined open-heart surgery to relieve spinal cord compression, restore the stability of the spine and maximize the recovery of nerve and spinal cord function. The main objective of this article is to present a schwannoma that had invaded the T5 and T6 vertebral bodies and formed a large paravertebral mass with simultaneous invasion of the spinal canal and compression of the spinal cord. CASE SUMMARY: A 40-year-old female suffered from intermittent chest and back pain for 8 years. Computed tomography and magnetic resonance imaging scans showed a paravertebral tumor of approximately 86 mm × 109 mm × 116 mm, where the adjacent T5 and T6 vertebral bodies were invaded by the tumor, the right intervertebral foramen was enlarged, and the tumor had invaded the spinal canal to compress the thoracic medulla. The preoperative puncture biopsy diagnosed a benign schwannoma. Complete resection of the tumor was achieved by a two-step operation. In the first step, the thoracic surgeon adopted a lateral approach to separate the thoracic tumor from the lung. In the second step, a spine surgeon performed a posterior midline approach to dissect the tumor from the vertebral junction through removal of the tumor from the posterior side and further resection of the entire T5 and T6 vertebral bodies. The large bone defect was reconstructed with titanium mesh, and the posterior root arch was nail-fixed. Due to the large amount of intraoperative bleeding, we performed tumor angioembolization before surgery to reduce and avoid large intraoperative bleeding. The postoperative diagnosis of benign schwannoma was confirmed by histochemical examination. There was no sign of tumor recurrence or spinal instability during the 2-year follow-up. CONCLUSION: Giant schwannoma is uncommon. In this case, a complete surgical resection of a giant thoracic nerve sheath tumor that invaded part of the vertebral body and compressed the spinal cord was safe and effective.

9.
Genet Epidemiol ; 45(2): 171-189, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32996630

RESUMEN

Genes, including those with transgenerational effects, work in concert with behavioral, environmental, and social factors via complex biological networks to determine human health. Understanding complex relationships between causal factors underlying human health is an essential step towards deciphering biological mechanisms. We propose a new analytical framework to investigate the interactions between maternal and offspring genetic variants or their surrogate single nucleotide polymorphisms (SNPs) and environmental factors using family-based hybrid study design. The proposed approach can analyze diverse genetic and environmental factors and accommodate samples from a variety of family units, including case/control-parental triads, and case/control-parental dyads, while minimizing potential bias introduced by population admixture. Comprehensive simulations demonstrated that our innovative approach outperformed the log-linear approach, the best available method for case-control family data. The proposed approach had greater statistical power and was capable to unbiasedly estimate the maternal and child genetic effects and the effects of environmental factors, while controlling the Type I error rate against population stratification. Using our newly developed approach, we analyzed the associations between maternal and fetal SNPs and obstructive and conotruncal heart defects, with adjustment for demographic and lifestyle factors and dietary supplements. Fourteen and 11 fetal SNPs were associated with obstructive and conotruncal heart defects, respectively. Twenty-seven and 17 maternal SNPs were associated with obstructive and conotruncal heart defects, respectively. In addition, maternal body mass index was a significant risk factor for obstructive defects. The proposed approach is a powerful tool for interrogating the etiological mechanism underlying complex traits.


Asunto(s)
Cardiopatías Congénitas , Modelos Genéticos , Estudios de Casos y Controles , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo
10.
J Alzheimers Dis ; 74(2): 521-534, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32065788

RESUMEN

Hyperphosphorylated tau is one of the key characteristics of Alzheimer's disease (AD), and tau pathology correlates with cognitive impairment in AD better than amyloid-ß (Aß) pathology. Thus, a complete understanding of the relevant factors involved in tau phosphorylation is important for AD treatment. APOEɛ4, the strongest genetic risk factor for AD, was found to be involved in tau pathology in frontotemporal dementia. This result indicated that apolipoprotein E (ApoE) may also participate in tau phosphorylation in AD. In the present study, we injected Aß oligomer (AßO) into the lateral ventricles of wild-type (WT) mice and apoE-/- mice to test the process of tau phosphorylation in the acute phase. We found that the phosphorylated tau and phosphokinase levels were higher in WT mice than in apoE-/- mice. These phenomena were also confirmed in vitro. ApoE ɛ4-treated apoE-/- neurons exhibited more phosphorylated tau than ApoE ɛ2- and ApoE ɛ3-treated neurons. We also found that AßO induced more serious inflammation in WT mice and in ApoE-positive cultured neurons. Anti-inflammatory treatment reduced the phosphorylated tau level induced by AßOs in ApoE-positive neurons. These results suggest that ApoE may facilitate the phosphorylation of tau induced by AßO via inflammation.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E/deficiencia , Proteínas tau/metabolismo , Péptidos beta-Amiloides/genética , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/farmacología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas tau/genética
11.
R Soc Open Sci ; 6(4): 181877, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31183123

RESUMEN

Icariin, the main effective component extracted from epimedium, has been shown to stimulate osteogenic differentiation and bone formation and to increase synthesis of the cartilage extracellular matrix. However, there has been little study on the effects of icariin on osteoarthritis. In this study, we loaded icariin onto poly(lactic-co-glycolic acid) (PLGA) electrospinning. The aim of this study was to explore a composite scaffold and to inhibit the progression of osteoarthritis. Our main experimental results demonstrated that the PLGA/icariin composite spinning scaffold had higher hydrophilicity, and icariin was released slowly and steadily from the scaffold. According to the results of an MTT test, immunofluorescence staining, an alkaline phosphate activating assay and a real-time polymerase chain reaction (RT-PCR) assay, the PLGA/icariin composite scaffold had good biocompatibility. In models of osteoarthritis, the results of a RT-PCR assay indicated that the PLGA/icariin scaffold promoted the synthesis of the extracellular matrix. The results of X-ray microtomography and histological evaluation demonstrated that the PLGA/icariin scaffold maintained the functional morphology of articular cartilage and inhibited the resorption of subchondral bone trabeculae. These findings indicated that the PLGA and icariin composite scaffold has therapeutic potential for use in the treatment of osteoarthritis.

12.
Int J Syst Evol Microbiol ; 69(8): 2471-2476, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31180314

RESUMEN

A nitrite-tolerant denitrifying bacterium, strain GL14T, was isolated from the nitrification/denitrification bioreactor in our laboratory. Strain GL14T was Gram-stain-negative, rod-shaped, non-spore-forming, facultatively anaerobic and motile by means of a single polar flagellum. Phylogenetic analyses based on 16S rRNA gene sequences indicated that it was assigned to the genus Pseudomonas with highest 16S rRNA gene sequence similarity (98.77 %) to Pseudomonas xanthomarina DSM 18231T and Pseudomonassongnenensis NEAU-ST5-5T, followed by Pseudomonasstutzeri ATCC 17588T (98.42 %), Pseudomonaskunmingensis HL22-2T (98.29 %) and Pseudomonaszhaodongensis NEAU-ST5-21T (98.22 %). Phylogenetic analysis based on both concatenated sequences of the 16S rRNA gene and two housekeeping genes (gyrB and rpoD) and genome sequences further clarified the intrageneric phylogenetic position of strain GL14T. The DNA G+C content of GL14T was 63.1 mol%. The results of digital DNA-DNA hybridization (highest 24.2 % of DNA-DNA relatedness) based on the Genome-to-Genome Distance Calculator and average nucleotide identity analyses (highest 80.23 %) confirmed that the strain was distinctly delineated from known species of the genus Pseudomonas. The major fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C16 : 0, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), C17 : 0cyclo and C12 : 0. The respiratory quinone was ubiquinone Q-9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on the phylogenetic, genomic, phenotypic and chemotaxonomic analyses, it was concluded that strain GL14T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas nitrititolerans sp. nov. is proposed. The type strain is GL14T (=CGMCC 1.13874T=NBRC 113853T).


Asunto(s)
Reactores Biológicos/microbiología , Nitritos/metabolismo , Filogenia , Pseudomonas/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Desnitrificación , Ácidos Grasos/química , Genes Bacterianos , Nitrificación , Hibridación de Ácido Nucleico , Fosfolípidos/química , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
13.
EBioMedicine ; 42: 174-187, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30926423

RESUMEN

BACKGROUND: Soluble amyloid-ß oligomer (AßO) induced deleterious cascades have recently been considered to be the initiating pathologic agents of Alzheimer's disease (AD). However, little is known about the neurotoxicity and production of different AßOs. Understanding the production and spread of toxic AßOs within the brain is important to improving understanding of AD pathogenesis and treatment. METHODS: Here, PS1V97L transgenic mice, a useful tool for studying the role of AßOs in AD, were used to identify the specific AßO assembly that contributes to neuronal injury and cognitive deficits. Then, we investigated the production and spread of toxic Aß assemblies in astrocyte and neuron cultures, and further tested the results following intracerebroventricular injection of AßOs in animal model. FINDINGS: The results showed that cognitive deficits were mainly caused by the accumulation of nonameric and dodecameric Aß assemblies in the brains. In addition, we found that the toxic AßOs were duplicated in a time-dependent manner when BACE1 and apolipoprotein E were overexpressed, which were responsible for producing redundant Aß and forming nonameric and dodecameric assemblies in astrocytes, but not in neurons. INTERPRETATION: Our results suggest that astrocytes may play a central role in the progression of AD by duplicating and spreading toxic AßOs, thus triggering neuronal injury. FUND: This study was supported by the Key Project of the National Natural Science Foundation of China; the National Key Scientific Instrument and Equipment Development Project; Beijing Scholars Program, and Beijing Brain Initiative from Beijing Municipal Science & Technology Commission.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Neuronas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Péptidos beta-Amiloides/química , Animales , Apolipoproteínas E/metabolismo , Astrocitos/patología , Supervivencia Celular , Células Cultivadas , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/psicología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/patología , Unión Proteica , Ratas
14.
Genet Epidemiol ; 43(1): 24-36, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30387901

RESUMEN

The manifestation of complex traits is influenced by gene-gene and gene-environment interactions, and the identification of multifactor interactions is an important but challenging undertaking for genetic studies. Many complex phenotypes such as disease severity are measured on an ordinal scale with more than two categories. A proportional odds model can improve statistical power for these outcomes, when compared to a logit model either collapsing the categories into two mutually exclusive groups or limiting the analysis to pairs of categories. In this study, we propose a proportional odds model-based generalized multifactor dimensionality reduction (GMDR) method for detection of interactions underlying polytomous ordinal phenotypes. Computer simulations demonstrated that this new GMDR method has a higher power and more accurate predictive ability than the GMDR methods based on a logit model and a multinomial logit model. We applied this new method to the genetic analysis of low-density lipoprotein (LDL) cholesterol, a causal risk factor for coronary artery disease, in the Multi-Ethnic Study of Atherosclerosis, and identified a significant joint action of the CELSR2, SERPINA12, HPGD, and APOB genes. This finding provides new information to advance the limited knowledge about genetic regulation and gene interactions in metabolic pathways of LDL cholesterol. In conclusion, the proportional odds model-based GMDR is a useful tool that can boost statistical power and prediction accuracy in studying multifactor interactions underlying ordinal traits.


Asunto(s)
Epistasis Genética , Reducción de Dimensionalidad Multifactorial , Carácter Cuantitativo Heredable , Aterosclerosis/genética , Simulación por Computador , Etnicidad/genética , Redes Reguladoras de Genes , Genotipo , Humanos , Modelos Genéticos , Fenotipo , Análisis de Componente Principal , Probabilidad , Curva ROC , Factores de Riesgo
15.
J Alzheimers Dis ; 62(4): 1803-1813, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29614663

RESUMEN

Abnormal amyloid-ß (Aß) aggregates are a striking feature of Alzheimer's disease (AD), and Aß oligomers have been proven to be crucial in the pathology of AD. Any intervention targeting the generation or aggregation of Aß can be expected to be useful in AD treatment. Oxidative stress and inflammation are common pathological changes in AD that are involved in the generation and aggregation of Aß. In the present study, 6-month-old PS1V97L transgenic (Tg) mice were treated with sulforaphane, an antioxidant, for 4 months, and this treatment significantly inhibited the generation and aggregation of Aß. Sulforaphane also alleviated several downstream pathological changes that including tau hyperphosphorylation, oxidative stress, and neuroinflammation. Most importantly, the cognition of the sulforaphane-treated PS1V97L Tg mice remained normal compared to that of wild-type mice at 10 months of age, when dementia typically emerges in PS1V97L Tg mice. Pretreating cultured cortical neurons with sulforaphane also protected against neuronal injury caused by Aß oligomers in vitro. These findings suggest that sulforaphane may be a potential compound that can inhibit Aß oligomer production in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Isotiocianatos/farmacología , Aprendizaje Espacial/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Nootrópicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Presenilina-1/genética , Presenilina-1/metabolismo , Cultivo Primario de Células , Ratas Sprague-Dawley , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología , Sulfóxidos
16.
AMB Express ; 7(1): 23, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28097594

RESUMEN

Vibriosis is a major epizootic disease that impacts free-living and farmed fish species worldwide. Use of probiotics is a promising approach for prevention of Vibrio infections in aquaculture. A probiotic anti-Vibrio strain, Bacillus pumilus H2, was characterized, and the mechanism of its effect was investigated. All 29 Vibrio strains tested were growth-inhibited by H2. The anti-Vibrio substance present in cell-free supernatant of H2 was purified and characterized by reversed-phase HPLC. Minimum inhibitory concentrations of the purified substance, determined in liquid media for various Vibrio strains, ranged from 0.5 to 64 µg/ml. Addition of the purified substance to Vibrio vulnificus culture inhibited cell growth (estimated by OD600). Confocal microscopy and scanning electron microscopy analyses showed that surface structure of V. vulnificus cells was damaged by the purified substance, as reflected by presence of membrane holes, disappearance of cellular contents, and formation of cell cavities. The major mechanism of this anti-Vibrio activity appeared to involve disruption of cell membranes, and consequent cell lysis. The purified anti-Vibrio substance was shown to be structurally identical to amicoumacin A by MS and NMR analysis. Our findings indicate that B. pumilus H2 has strong potential for prevention or treatment of fish vibriosis in the aquaculture industry.

17.
Chin J Nat Med ; 14(6): 413-20, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27473958

RESUMEN

There is an increasing interest in phytoestrogens due to their potential medical usage in hormone replacement therapy (HRT). The present study was designed to investigate the in vitro effects of estrogen-like activities of two widespread coumarins, osthole and imperatorin, using the MCF-7 cell proliferation assay and their alkaline phosphatase (ALP) activities in osteoblasts Saos-2 cells. The two compounds were found to strongly stimulate the proliferation of MCF-7 cells. The estrogen receptor-regulated ERα, progesterone receptor (PR) and PS2 mRNA levels were increased by treatment with osthole and imperatorin. All these effects were significantly inhibited by the specific estrogen receptor antagonist ICI182, 780. Cell cycle analysis revealed that their proliferation stimulatory effect was associated with a marked increase in the number of MCF-7 cells in S phase, which was similar to that observed with estradiol. It was also observed that they significantly increased ALP activity, which was reversed by ICI182,780. These results suggested that osthole and imperatorin could stimulate osteoblastic activity by displaying estrogenic properties or through the ER pathway. In conclusion, osthole and imperatorin may represent new pharmacological tools for the treatment of osteoporosis.


Asunto(s)
Cnidium/química , Cumarinas/farmacología , Medicamentos Herbarios Chinos/farmacología , Furocumarinas/farmacología , Osteoblastos/efectos de los fármacos , Fitoestrógenos/farmacología , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Células MCF-7 , Osteoblastos/citología , Osteoblastos/enzimología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo
18.
Neural Regen Res ; 11(2): 332-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27073389

RESUMEN

Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau expression in the injured spinal cord. The second aim was to determine whether tau can regulate neural stem cell migration, a critical factor in the successful treatment of spinal cord injury. We established rat models of spinal cord injury and injected them with mouse hippocampal neural stem cells through the tail vein. We used immunohistochemistry to show that the expression of tau protein and the number of migrated neural stem cells were markedly increased in the injured spinal cord. Furthermore, using a Transwell assay, we showed that neural stem cell migration was not affected by an elevated tau concentration in the outer chamber, but it was decreased by changes in intracellular tau phosphorylation state. These results demonstrate that neural stem cells have targeted migration capability at the site of injury, and that although tau is not a chemokine for targeted migration of neural stem cells, intracellular tau phosphorylation/dephosphorylation can inhibit cell migration.

19.
Neural Regen Res ; 11(3): 480-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27127490

RESUMEN

Following spinal cord ischemia/reperfusion injury, an endogenous damage system is immediately activated and participates in a cascade reaction. It is difficult to interpret dynamic changes in these pathways, but the examination of the transcriptome may provide some information. The transcriptome reflects highly dynamic genomic and genetic information and can be seen as a precursor for the proteome. We used DNA microarrays to measure the expression levels of dynamic evolution-related mRNA after spinal cord ischemia/reperfusion injury in rats. The abdominal aorta was blocked with a vascular clamp for 90 minutes and underwent reperfusion for 24 and 48 hours. The simple ischemia group and sham group served as controls. After rats had regained consciousness, hindlimbs showed varying degrees of functional impairment, and gradually improved with prolonged reperfusion in spinal cord ischemia/reperfusion injury groups. Hematoxylin-eosin staining demonstrated that neuronal injury and tissue edema were most severe in the 24-hour reperfusion group, and mitigated in the 48-hour reperfusion group. There were 8,242 differentially expressed mRNAs obtained by Multi-Class Dif in the simple ischemia group, 24-hour and 48-hour reperfusion groups. Sixteen mRNA dynamic expression patterns were obtained by Serial Test Cluster. Of them, five patterns were significant. In the No. 28 pattern, all differential genes were detected in the 24-hour reperfusion group, and their expressions showed a trend in up-regulation. No. 11 pattern showed a decreasing trend in mRNA whereas No. 40 pattern showed an increasing trend in mRNA from ischemia to 48 hours of reperfusion, and peaked at 48 hours. In the No. 25 and No. 27 patterns, differential expression appeared only in the 24-hour and 48-hour reperfusion groups. Among the five mRNA dynamic expression patterns, No. 11 and No. 40 patterns could distinguish normal spinal cord from pathological tissue. No. 25 and No. 27 patterns could distinguish simple ischemia from ischemia/reperfusion. No. 28 pattern could analyze the need for inducing reperfusion injury. The study of specific pathways and functions for different dynamic patterns can provide a theoretical basis for clinical differential diagnosis and treatment of spinal cord ischemia/reperfusion injury.

20.
Br J Pharmacol ; 173(6): 1095-109, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26787506

RESUMEN

BACKGROUND AND PURPOSE: Atrial metabolic remodelling is critical for the process of atrial fibrillation (AF). The PPAR-α/sirtuin 1 /PPAR co-activator α (PGC-1α) pathway plays an important role in maintaining energy metabolism. However, the effect of the PPAR-α agonist fenofibrate on AF is unclear. Therefore, the aim of this study was to determine the effect of fenofibrate on atrial metabolic remodelling in AF and explore its possible mechanisms of action. EXPERIMENTAL APPROACH: The expression of metabolic proteins was examined in the left atria of AF patients. Thirty-two rabbits were divided into sham, AF (pacing with 600 beats·min(-1) for 1 week), fenofibrate treated (pretreated with fenofibrate before pacing) and fenofibrate alone treated (for 2 weeks) groups. HL-1 cells were subjected to rapid pacing in the presence or absence of fenofibrate, the PPAR-α antagonist GW6471 or sirtuin 1-specific inhibitor EX527. Metabolic factors, circulating biochemical metabolites, atrial electrophysiology, adenine nucleotide levels and accumulation of glycogen and lipid droplets were assessed. KEY RESULTS: The PPAR-α/sirtuin 1/PGC-1α pathway was significantly inhibited in AF patients and in the rabbit/HL-1 cell models, resulting in a reduction of key downstream metabolic factors; this effect was significantly restored by fenofibrate. Fenofibrate prevented the alterations in circulating biochemical metabolites, reduced the level of adenine nucleotides and accumulation of glycogen and lipid droplets, reversed the shortened atrial effective refractory period and increased risk of AF. CONCLUSION AND IMPLICATIONS: Fenofibrate inhibited atrial metabolic remodelling in AF by regulating the PPAR-α/sirtuin 1/PGC-1α pathway. The present study may provide a novel therapeutic strategy for AF.


Asunto(s)
Fibrilación Atrial/metabolismo , Remodelación Atrial/efectos de los fármacos , Fenofibrato/farmacología , PPAR alfa/agonistas , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/metabolismo , Animales , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/patología , Carbazoles/farmacología , Línea Celular , Fenofibrato/uso terapéutico , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Oxazoles/farmacología , PPAR alfa/antagonistas & inhibidores , PPAR alfa/metabolismo , Conejos , Sirtuina 1/antagonistas & inhibidores , Tirosina/análogos & derivados , Tirosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...